EU project number 613678

Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens

Work package 1. Pathways of introduction of fruit pests and pathogens

Deliverable 1.3.

PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List

Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as 'Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List'. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014

DROPSA is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678).

dropsa@fera.co.uk

DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List

1.	Introduction	2	
1.1	Background on oranges and mandarins	2	
1.2	Data on production and trade of orange and mandarin fruit	5	
1.3	Characteristics of the pathway 'orange and mandarin fruit'	7	
2.	Methods as used for Citrus	9	
2.1	Step 1	9	
2.2	Step 2	9	
2.3	Step 3	9	
3.	Results and their discussion	10	
3.1	Considerations on pests listed at Step 1 and Step 2, and selected for the Alert List	.10	
3.1.1	Step 1 List	.10	
3.1.2	Step 2 List	.10	
3.1.3	Alert List	.11	
3.1.4	Possible gaps in data and pests missing from the lists	.11	
3.2	Other findings of interest during the preparation of Alert Lists	.12	
3.2.1	Pest already regulated in the EU	.12	
3.2.2	Pests recommended for regulation by EPPO	12	
3.2.3	Pests present in the EU, or present only indoors in the EU	.12	
3.2.4	Pests proposed in answer to the EPPO questionnaire on pests of concern for <i>Citrus</i>	.14	
3.2.5	Pests of moderate impact but without mobile life stages	.15	
3.2.6	Fruit-piercing Noctuidae for which only adults are associated with Citrus fruit	.16	
3.2.7	Other pathways for <i>Citrus</i> pests	.16	
3.2.8	Pests for which there was insufficient information	18	
3.2.9	Contaminants	.19	
3.2.10		.20	
4.	Conclusion	20	
5.	References (All URLs were accessed in September 2016)	.21	
ANNEX	(1. Oranges: detailed data on trade (Source: Eurostat)	22	
ANNEX	(2. Mandarins :detailed data on trade (Source: Eurostat)	24	
ANNEX 3. Pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (2016-04)26			
ANNEX 4. Categories of pests retained on the Alert List			
ANNEX 5. List of pests remaining for consideration for the Alert List at Step 2			
ANNEX	(6. Organisms excluded from further consideration at Step 1 and Step 2	37	
ANNEX	3. Oranges and mandarins Alert List	50	

1. Introduction

Oranges and mandarins were selected to establish an Alert List of pests that may present a risk to cultivated species or varieties in the EU (see *Analysis of fruit production and imports in the EU to select species for pathway studies*¹ – thereafter *Selection of fruit*). It was also decided that other Citrus species would be kept in mind, to take account of the general importance of Citrus in the EU and the fact that pests often affect several Citrus species. Orange and mandarin are the Citrus species that are the most imported in the EU, and represent a large cropping area (>420.000 ha together). This section is not an exhaustive study of the pathway 'orange and mandarin fruit', but is intended to outline the different *Citrus* species concerned by trade and present in the EU, the countries from which oranges and mandarins are imported into the EU, and some characteristics of the pathway, for the purpose of better targeting searches and the screening of pests.

1.1 Background on oranges and mandarins

This section focuses on issues that are important to the present study. *Citrus* originate from Asia and have been naturalized in many parts of the world. There are also native species in various regions (e.g. Australia – Hele, 2006). *Citrus* are not new crops in Europe or other areas, although the cropping of some species or hybrids has started more recently than others. *Citrus* were introduced into Europe for cropping purposes already in the late 8th century (sour orange) and, in the Americas, first to the Caribbean in the late 15th century, later to continental Americas. In the 16th century, sweet oranges reached Europe. In the 17th century, oranges, lemons and pomelos reached South Africa, and at the end of the 18th century, oranges reached Australia. Mandarins were the latest introduction both in Europe and the Americas, at the end of the 19th century (Webber, 1967).

The majority of *Citrus* fruit mature during the local winter. In Europe, the main *Citrus* season is in November to March, and for some varieties as early as October and as late as May. *Citrus* in tropical climates may have several harvests a year, but this does not seem to be the case for oranges and mandarins (rather limes, pomelos and grapefruits).

The taxonomy of *Citrus* is complex, and there are many species and hybrids worldwide. *Citrus* spp. hybridize readily naturally and new hybrids are produced in breeding programmes. Literature searches intended to target all *Citrus* cultivars, with more attention to species of oranges and mandarins. However, which species and hybrids are regarded as 'oranges' or 'mandarins' is not always clear. It is also not clear under which trade category the different species or hybrids are allocated in production and trade data (see section 1.2). Mabberley (1997) divides *Citrus* in three major groups under a Linnean scheme: *C. medica* (includes lemons), *C. reticulata* (includes mandarins, clementines and similar) and *C. maxima* (includes species and hybrids belonging to oranges, grapefruits and limes).

The common names 'oranges' and 'mandarins' apply to a wide variety of species and hybrids, as detailed below. In some cases, common names may point to different categories for the same species or variety (e.g. *Citrus* × *aurantium* 'Sanbokan' is called Sanbokan sour orange/sweet lemon/grapefruit). Most information below is extracted from the review in the website by Koskinen (2015).

Oranges relevant for this study

There are two main categories of oranges:

- **sweet oranges** (species, varieties and hybrids of *C. sinensis*² (synonyms are sometimes used in the literature, such as *Citrus aurantium* var. *sinensis* or *Aurantium sinense*) are eaten fresh or used in juice or various preparations. Sweet oranges that are imported fresh would be intended for consumption or processing. There are many varieties of sweet oranges, such as Jaffa, Valencia and Navel. Variety names are sometimes used in publications in place of species names. Blood oranges are a type of sweet orange with red flesh. Hybrids of *C. sinensis* are for example Chironja orangelo (natural hybrid of sweet orange) or 'Poorman orange' (natural hybrid or orange with pomelo or tangelo).
- **sour oranges** (species, varieties and hybrids of *C*. x *aurantium*) are usually not eaten fresh, although there are specific uses for some varieties or in certain parts of the world. Oil is extracted from the flowers, leaves, seeds and rind, and is used, for example, inperfumes. The fruit is also used processed (e.g. British orange marmelade, aroma for soft drinks). *C* x *aurantium* is also used as rootstock. Sour oranges that are imported fresh are likely to be used for processing. There are many hybrids of *C*. x

¹ Available at https://upload.eppo.int/download/10200eec69a8b

 $^{^{2}}$ Although formally an hybrid, written *C. sinensis* from here onwards and in the Step 1 and Step 2 Lists (which is also common in the literature).

aurantium in Asia, where it originates. Some varieties or hybrids of *C*. x *aurantium* have other Latin names in different classifications, which are mentioned in some publications (see Table 1). The processing of orange fruit was not studied, but it may have impact on the transfer of pests, in particular whether the pests are destroyed, or whether infested waste (especially peels) is discarded in large amounts in areas where oranges are also produced.

In addition, there are wild species of oranges, such as *C. indica* (Indian wild orange, possibly used as rootstock), *C. tachibana* ('tachibana orange'). No information was found on whether some fruit is collected and traded from the wild.

Finally the name 'trifoliate orange' often appears in publications, referring to *Citrus trifoliata* (syn. *Poncirus trifoliata*, *Citrus trifoliata*, *Citrus trifolia*), mostly used as rootstock or ornamental (e.g. *C. trifoliata* var. *monstrosa*). Fruits are generally not edible, although fruit of some hybrids are used in traditional medicine or processed for specific uses (juice for syrup, candied peel, source of pectin). Such fruits are not expected to be traded, and this species is therefore not considered as 'orange fruit' for the purpose of this study. Many hybrids of *trifoliata* are also commonly mentioned in the literature, such as: citrange (*C. × insitorum* Mabb. Citrange, *C. sinensis × C. trifoliata*), citrandarin (*C. reticulata × C. trifoliata*), citradia (*C. aurantium × C. trifoliata*), citremon (*C. limon x C. trifoliata*), citrumelo (*C. paradisi × C. trifoliata*).

Generic common names for sweet and sour oranges in Spanish and Portuguese (for the purpose of searches) are naranja (in Spanish) and laranja/laranjera (in Portuguese). Sour orange is also called bigarade in English, and bigaradier in French.

Name	Synonyms Use	Other names
Citrus x aurantium L.	Citrus aurantium var. amara Engl.	Common sour orange, Seville
	Use incl. fruit (marmelade)	orange, Bitter orange
<i>Citrus × aurantium '</i> Sevillano'	Citrus × aurantium 'Real'	Common sour orange, Seville
	Citrus × aurantium 'Agrio de España'	orange, Bitter orange
	Use incl. fruit (marmelade)	
Citrus × aurantium 'Bittersweet	Citrus aurantium var. bigaradia Hook	Bittersweet orange, Paraguayan
group'	Citrus bigaradia Risso & Poit.	Bigarade
	Citrus bigarradia Loisel.	
	Use incl. fruit (marmelade)	
Citrus × aurantium 'Chinotto	Citrus bigaradia Risso & Poit. var. chinensis	Myrtle-leaved orange
Group'	Citrus myrtifolia Raf.	
	Citrus aurantium var. myrtifolia Ker-Gawl.	
	Use incl. soft drinks, beverages, candy	
Hybrids		
Citrus × aurantium 'Bergamot	Citrus × aurantium ssp. bergamia (Risso et Poit.)	Bergamot, bergamot orange
Group'	Wight & Arn. ex Engl.	
Hybrid of <i>C. x aurantium</i> and <i>C.</i>	Citrus bergamia Risso	
limetta	Citrus × aurantium var. bergamia Loisel.	
	Use incl. citrus soft drinks (juice), animal feed (pulp),	
	essential oil for cosmetics, flavour (peel)	
<i>Citrus × aurantium</i> 'Kikudaidai'	Citrus canaliculata Y. Tanaka	Kikudaidai, Kiku-daidai, Kiku
	Citrus × aurantium L. subf. canaliculata (Hort. ex	
	Yu. I anaka) M. Hiroe	
	Use incl. ornamental	
Citrus × aurantium 'Yama'	Citrus intermedia Tanaka	Yama, Yama-mikan sour orange,
	<i>Citrus × aurantium</i> L. f. <i>intermedia</i> (Hort. ex Tanaka)	mountain citrus
	M.Hiroe	
	Use Incl. ornamental	
<i>Citrus × aurantium</i> 'Karna'	Citrus karna Rat.	Karna, Khatta, Indian lemon
Possibly an hybrid of sour orange	Citrus × aurantium L. var. khatta Bonavia	
and lemon	Citrus dimorphocarpa Lush.	
	Use Inci. rootstock, fruit?	
Citrus * aurantium "Kitchii"		Nitchii sour orange, vadiapudi
	Use incl. fruit	sour orange, Guntur sour orange
Citrus × aurantium 'Miaray'	Citrus miaray Wester	Miarai sour orange, Pomelo
	Ornamental	miaray
Citrus × aurantium 'Natsudaidai'	Citrus natsudaidai Hayata	Japanese summer orange,

Table 1. Some scientific and common names of C. x aurantium types and hybrids

Name	Synonyms Use	Other names
natural hybrid of pomelo and sour	Citrus × aurantium L. f. natsudaidai (Tanaka) M.Hiroe	Natsudaidai
orange	Citrus natsumikan	Bigarade natsudaïdaï
-	Use incl. fruit (marmelade, beverages etc.	
Citrus × aurantium 'Tosu	Citrus neoaurantium Tanaka	Japanese Tosu orange
Possibly sour orange x citron or	Use incl. fruit?	
mandarin		
Citrus × aurantium 'Zadaidai'	Citrus rokugatsu Yu. Tanaka	Zadaidai sour orange,
Possibly mandarin x sour orange	Citrus × aurantium L. var. cyathifera Yu. Tanaka	Rokugatsu-mikan sour orange
	Use incl. fruit?	
Citrus × aurantium 'Sanbokan'	Citrus sulcata Takahashi	Sanbokan sour orange,
	Citrus × aurantium L. subf. sulcata (lk.Takah.) M.Hiroe	Sanbokan sweet Lemon,
	Use incl. fruit (used as limes and lemons	Sanbokan grapefruit
Citrus × aurantium 'Nanshodaidai'	Citrus taiwanica Tanaka & Y. Shimada	Taiwan orange, Nansho Daidai
pomelo-mandarin hybrid, wild	Citrus nanshô-daidai	sour orange
	Use incl. fruit?	•

Mandarins relevant for this study

Mandarins are *C. reticulata* and some of its hybrids, but various other Latin names are used in different classifications. Mandarins have sometimes been separated in four broad categories: *unshui* (satsuma), *nobilis* (king mandarin), *deliciosa* (Mediterranean mandarins) and *reticulata* (all others, including hybrids). However, the category *deliciosa* is a variety of *C. reticulata*. Table 2 illustrates categories of mandarins, and subcategories of *C. reticula* that have specific names used in the literature.

Table 2. Some categories of mandarins

Satsuma C. unshiu Marcow. common mandarin C. nobilis Andrews, non Lour. King mandarin C. nobilis Loureiro Mediterranean mandarin, willowleaf mandarin C. deliciosa Tenore C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. typica Loureiro C. deliciosa Loureiro
common mandarin C. nobilis Andrews, non Lour. King mandarin C. nobilis Loureiro Mediterranean mandarin, willowleaf mandarin C. deliciosa Tenore C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. typica Loureiro C. nobilis var. typica Loureiro
King mandarin C. nobilis Loureiro Mediterranean mandarin, willowleaf mandarin C. deliciosa Tenore C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. typica Loureiro C. reticulata var. salicifolia Blanco C. nobilis var. deliciosa Loureiro C. nobilis var. deliciosa Loureiro C. salicifolia Raf. C. tangerina Tanaka
C. nobilis var. typica Loureiro Mediterranean mandarin, willowleaf mandarin C. deliciosa Tenore C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. deliciosa Loureiro C. salicifolia Raf. C. tangerina Tanaka
Mediterranean mandarin, willowleaf mandarin C. deliciosa Tenore C. reticulata var. deliciosa Blanco C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. deliciosa Loureiro C. salicifolia Raf. C. tangerina Tanaka
C. reticulata var. deliciosa Blanco C. reticulata var. salicifolia Blanco C. nobilis var. deliciosa Loureiro C. salicifolia Raf. tangerine C. tangerina Tanaka
C. reticulata var. salicifolia Blanco C. nobilis var. deliciosa Loureiro C. salicifolia Raf. tangerine C. tangerina Tanaka
C. nobilis var. deliciosa Loureiro C. salicifolia Raf. tangerine C. tangerina Tanaka
C. salicifolia Raf. tangerine C. tangerina Tanaka
tangerine C. tangerina Tanaka
Ponkan mandarin, Suntara mandarin/orange <i>C. reticulata</i> var. <i>poonensis</i> (Hayata) H.H. Hu
C. poonensis Tanaka
Fuzhu mandarin C. reticulata 'Fuzhu'; C. reticulata 'Zhuju'
C. erythrosa Tanaka ; C. reticulata Blanco var. erythrosa H. H. Hu
clementine C. clementina Tanaka
C. reticulata var. chrysocarpa Tanaka
C. deliciosa x C. sinensis
tangor C. × nobilis Loureiro
C. × tangor Lanaka
C. reticulata × (C. × sinensis)
mandor Some nybrids of mandarin × orange
tangelo C. × tangelo J.W. Ingram & H.E. Moore
C. reticulata × (C. × paradisi)
tangelo Ugli Citrus UGLI ®; C. reticulata X.C. paradisi Ugli
tangelolo Mandann X tangelo
tangelo × ciementine hybride
King × willowleaf manualin hybrids (C. × hobilis) × (C. × deliciosa y tanger tangerine y willowleaf y tanger hybride C. reticulate y C. deliciosa y tanger
Cherre Some apoint a tangoi hybrids C. reliculata X C. deliciosa X tangoi
Sour mandarin
Cleanatra mandarin Citrus sainki
Shekwasha
Nasparan Citrus amblucarna
Kinokuni
Citrus kuonersiseeformis

1.2 Data on production and trade of orange and mandarin fruit

Varieties and hybrids of *Citrus* in production are selected for the agronomic characteristics of the trees (e.g. vigour, ripening time, yield, tolerance to cold, heat or dry conditions) and of the fruit (e.g. size, shape, sugar versus acids, seedlessness, ease of peeling, thickness of the peel, colour of the fruit and of the juice, ripening period, conservation period of fruit on the trees etc.).

'Oranges' and 'mandarins' are categories in the production and trade data in Eurostat (see Table 3). The subcategory 'sweet oranges' would cover *C. sinensis*, and 'others' may cover major species such as *C. aurantium* (sour orange). Both *C. sinensis* and *C. aurantium* are also mentioned as traded species in additional data provided by some EPPO countries (see at the end of this section). Regarding mandarins and its subcategories in trade data, 'Monreal' is a variety of clementine, while 'satsumas' are *C. unshui*, and 'Wilkings' are an hybrid of *C. deliciosa* Willowleaf and *C. nobilis* King. For both oranges and mandarins, it is not clear in which category the various species or hybrids would fall, and if some are accounted for under 'other Citrus' instead of under oranges and mandarins.

Table 3. Categories of oranges and mandarins in Eurostat (under category 0805 Citrus fresh or dried)

0005.40	0005.00 Mandaring (including tanganing and actourse)
U805 10 Oranges	0805 20 Mandarins (including tangerines and satsumas);
0805 10 20 Sweet oranges, fresh	clementines, wilkings and similar citrus hybrids
0805 10 80 Other	0805 20 10 Clementines
	0805 20 30 Monreales and satsumas
	0805 20 50 Mandarins and wilkings
	0805 20 70 Tangerines
	0805 20 90 Other

General data on production and trade of *Citrus* (incl. oranges and mandarins) are given and analysed in the *Selection of fruit*. Oranges and mandarins are widely cultivated in the EU, at least *C. sinensis*, *C. aurantium*, *C. deliciosa and C. clementina*. It was not possible to analyse all species or hybrids grown in Europe, but many other species or hybrids may be grown for different purposes. In addition, some species may be used as ornamentals in gardens, parks or in other areas where they are not grown commercially. For example sour orange is used as a street and park tree in the Mediterranean area.

Due to the long history of *Citrus* cropping (see section 1.1.), there have been exchanges of plants and fruit, and therefore the opportunity for the movement of pests, for a long time. Some countries with a long history of cropping Citrus have only recently started to export to the EU. For example, trade data indicates a substantial increase of mandarin exports from Peru in recent years, which is due to the development of cropping and exports (Minagri, 2014). Trade is dominated by Africa and South America for oranges, and the same two plus the Near East for mandarins. It is worth noting that imports of oranges and mandarins from Asia, where the plants originate, are minor. Nevertheless China is a major producer and exporter of mandarins (but currently not to Europe). Modification of trade patters may create new risks for the movement of pests.

Imports from non-EU origins are detailed for oranges and mandarins respectively in Annexes 1 and 2 (data available referred to EU 27). The general category is 'citrus fresh and dried', but it is expected that oranges and mandarins are generally imported fresh. Oranges and mandarins become available in the winter period where they are grown. Consequently a large amount of oranges and mandarins are imported from the Southern hemisphere during the European summer-autumn, when fruit from the Mediterranean area are not available. Tables 4 and 5 indicate percentages of imports into the EU by region in 2002, 2008 and 2014. Table 6 outlines some trends for 2002-2014 (based on the trade data available - Annexes 1 and 2, Table 2).

Table 4. Percentages of imports of oranges into
the EU by region in 2002, 2008 and 2014

	2002	2008	2011	2014
Africa + South America	87.0	94.5	95.2	96.4
Africa	70.1	73.8	72.8	81.6
South America	16.8	20.7	22.4	14.8
Near East	9.3	4.2	2.7	2.3
North America	0.1	0.6	0.7	0.6
Caribbean	2.5	0.3	1.0	0.4
Central America	0.8	0.1	0.3	0.3
Asia	0.0	0.0	0.0	0.0
Oceania	0.1	0.2	0.0	0.0
Europe (non-EU)	0.1	00	0.0	0.0

Table 5. Percentages of imports of mandarinsinto the EU by region in 2002, 2008 and 2014

	,			. .
	2002	2008	2011	2014
Africa+Near East + South America	99.1	97.4	97.1	97.2
Africa	41.9	43.0	43.3	50.5
Near East	36.5	25.4	24.1	25.3
South America	20.7	29.0	29.7	21.4
North America	0.0	0.7	1.4	1.4
Asia	0.4	1.5	1.1	0.9
Oceania	0.1	0.3	0.1	0.2
Europe (non-EU)	0.1	0.1	0.3	0.2
Caribbean	0.2	0.1	0.1	0.1
Central America	0.0	0.0	0.0	0.0

Table 6. Trends of imports of oranges and mandarins into the EU

	Oranges	Mandarins
General	Imports from all regions of the world, for a total of over 730 000 t in 2014 (against over 2 millions t within the EU). Considering quantities over 100 kg, fruits were imported from 52 countries in 2002, 42 in 2008 and 2014. Imports were recorded every year (for the years considered in the period 2002-2014) from 26 countries. Historically, imports of citrus fruit by the major EU citrus- growing countries (Greece, Italy, Portugal, Spain) from the major exporting third countries were very limited until the mid-1990s. Indeed, Spain only started to import citrus fruit from third countries in the 1990. Structural change during the 1990s in the citrus fruit trade into EU Member States can be observed also in the increase in the number of exporting countries.	Imports from all regions of the world, for a total of over 176 000 t in 2014 (against over 1.6 million t within the EU). Considering quantities over 100 kg, fruits were imported from 39 countries in 2002, 33 in 2008, 34 in 2014. Imports were recorded every year from 17 countries (for the years considered in the period 2002 - 2014).
Main exporters to the EU	In 2014, over 80% of oranges imported from non-EU countries came from Africa. Africa and South America represent the large majority of imports, and their common share increased continuously in 2002-2014 i.e 87% of imports from non-EU countries in 2002 and 96.4% in 2014. (Table 4).	In 2014, over 97% of the mandarins imported from non- EU countries came from Africa, Near East or South America together, with over 50% from Africa alone (Table 5). The main exporters to the EU remained broadly the same, i.e. Morocco and South Africa for Africa, Argentina and Uruguay for South America, and Israel and Turkey for the Near East. One notable increase was Peru, which has become the 4 th exporter to the EU worldwide.
Africa	South Africa, Egypt, Zimbabwe, Morocco and Tunisia were the major exporters in the same period. Over 50% of oranges from Africa came from South Africa (increase of 30% in 2008-2014 to 380 209 t). Egypt became the 2 nd exporter (6-fold increase, to reach 181 960 t). Zimbabwe the 3 rd exporter with 31 920 t. Imports from Tunisia (to 15 175 t), Morocco (divided by 2 to 66 850 t) and Swaziland (2 493 t) have dropped considerably during the same period. Imports from other countries were minor and irregular. A few countries show minor but seemingly increasing exports to the EU, such as Ghana and Algeria.	Morocco and South Africa dominated exports (about 100 000 t and 85 300 t respectively), both with an increase, most notably South Africa (x 1.7). Egypt has comparatively small exports (1600 t in 2014), but which have increased 3 times over the period.
South America	The main countries exporting oranges to the EU remained the same over the period, i.e. Argentina, Brazil and Uruguay (in 2014 48400 t from Uruguay, 44700 t from Argentina and 18690 t from Brazil). Uruguay has become the first exporter, while exports from Argentina and Brazil decreased. Exports also increased from Peru and Colombia (to 8670 t and 1348 t in 2014). Imports from Chile were irregular.	Peru has become the largest exporter of mandarins to the EU, before Argentina and Uruguay. Exports from Peru have increased over 5 times since 2002, to reach over 48730 t in 2014. Exports from Argentina and Uruguay have decreased in the same period, to reach respectively 12000 t and 17030 t in 2014.
Caribbean	Imports were about 19125 t in 2002 but dropped to 5872 t in 2014, due to considerable drops in exports from Cuba (from 15770 t to 450 t in 2002-2014) and Jamaica.	Only Jamaica is a significant exporter (but only 4100 t in 2014, and imports decreased since 2002).
Near East	Imports from Israel and Turkey (both EPPO countries) decreased by 5- and 3-fold respectively in 2008-2014, to	Imports from Israel increased 3-fold and from Turkey were divided by 2 over 2002-2014, to reach 42060 t and

	Oranges	Mandarins
	5900 t and 13300 t.	51700 t. In recent years, there has been nearly no
		imports from other countries in the Near East.
Central	Only Belize and Honduras had substantial exports to the	Only small quantities are exported (11 t in 2014). The
America	EU in 2008-2014. Exports from Belize collapsed during	data does not show imports from this region every year,
	that period, while imports from Honduras were first	and the highest imported quantity is 214 t from Belize in
	recorded in 2006 and increased by 10 fold since,	2006.
	reaching 2720 t in 2014.	
North	Imports mostly from Mexico (4594 t in 2014) and only	The only mandarin exporter was the USA, with about
America	minor quantities from the USA (21 t in 2014).	5100 t in 2014 (about 120 t in 2002, and 1000 t in 2010).
Oceania	Imports from Australia have decreased from 1046 t in	Imports from Australia seem irregular (2200 t in 2010,
	2002 to 318 t in 2014. No exports were recorded from	665 t in 2014, 1900 t in 2013, 460 t in 2012 etc.). Imports
	New Zealand or other countries.	from New Zealand are also irregular and minor (2-130 t
		depending on years). No exports were recorded from
		other countries.
Asia	Very minor (39 t in 2013, 68 t in 2014, and peaked at	Minor, with over 1300 t from the Korea Rep and 1600 t
	430 t in 2009). The only subsequent quantities were	from Pakistan. Imports from the Korea Rep. started
	imported in 2009 from China (330 t). Imports from Iran	around 2010, and have increased since. China exports
	and Pakistan are regular (15 and 50 t in 2014).	small quantities to the EU (about 320 t), which seems to
		have increased in recent years.
European	Irregular and difficult to interpret (imports recorded from	Difficult to interpret (imports recorded from non-
non-EU	non-producing countries). Imports from the Russian	producing countries).
countries	Federation peaked at over 40 t in 2014.	

Additional data on fruit trade provided by some EPPO countries mentioned the following species of oranges and mandarins: *C. aurantium*, *C. sinensis* (oranges), *Citrus clementina*, *Citrus reticulata*, *C. nobilis*, C. *unshui*, *C. reticulata* var. *unshiu*, *C. reticulata x C. paradisi*, *C. tangerina*, *C. × tangelo* (mandarins). The list is possibly incomplete (only few countries provided data; most data is recorded in broad categories). In addition, the following *Citrus* are mentioned and were kept in mind when carrying out this study:

- Grapefruit: C. maxima (C. grandis), C. x paradisi
- Lemons: C. limon (C. limonum)
- Limes: C. aurantifolia (C. limonellus), C. latifolia,
- Others: *C. hystrix* (kaffir lime), '*C. japonica*' (=*Fortunella japonica*), *C. junos*, *C. limetta*, *C. x limonia*, *C. medica*. (It should be noted that some of these may be types of limes or lemons, but the Customs codes names limit these categories to the species above).

1.3 Characteristics of the pathway 'orange and mandarin fruit'

The following characteristics of the pathway have an importance for the presence of the pest on the fruit:

- *Citrus fruit imported from outside the EU should be free from leaves and peduncles.* The EU Directive 2000/29 (Annex IV.A.I. 16.1) provides that fruits of *Citrus, Fortunella, Poncirus* and their hybrids, 'originating in third countries shall be free from peduncles and leaves and the packaging shall bear an appropriate origin mark'. Consequently, only the calyx may be associated to such fruit. It is not known if fruit consignments may be contaminated by some peduncles or leaves as debris in the fruit.

- *Varieties traded*. There are many varieties and hybrids of oranges and mandarins, and various parameters influencing which are produced and traded (see 1.2). These parameters are too detailed for the present study, and differences between species, varieties and hybrids were not taken into account when screening the pests.

- *Trading period.* The trading period depends on the characteristics of the varieties (early, middle and late ripening varieties), but oranges and mandarins mature in winter where they grow. Oranges and mandarins from the Southern hemisphere would reach the EU in June-November, while oranges from the Northern hemisphere would be available from November to June, which is also the period where *Citrus* fruit from the EU and Mediterranean countries are available.

- Sorting of Citrus fruit at harvest, post-harvest treatments, packing. Peel injuries may easily become infected by molds and rots, which impact the general aspect of fruits and their taste, and spread readily from fruit to fruit in a consignment. Harvest and handling processes therefore aim at avoiding damage and removing damaged fruit. One damaged fruit may spoil many others and consequently it is likely that fruit is carefully sorted prior to export in most situations.

Oranges and mandarins may be stored for several months (see below), but the preparation of fruit before shipping is important for proper conservation of the fruit. This includes post-ripening of green or unsatisfactorily colored fruit; removal of dirt, sooty mold, spraying residues and scale insects in washers;

finishing of oranges colour in dye baths (subsequently marked as coloured); wax-coating or treatment with preservatives; grading by size, color and other external features. Waxing is required to prevent loss of aroma and weight because the washing process removes the natural wax layer (GDV, 2016a oranges, 2016b mandarins; 2016c clementines). It is likely that most oranges and mandarins imported to the EU have been handled in such a manner to ensure conservation of fruit.

Both washing and sorting of fruit may have an impact on the presence of pests. However, it is not clear if the measures above are applied to all types of oranges and mandarins, intended uses and from all origins. Arguments used in some publications that surface feeders are not expected to survive post-harvest cleaning, chemical dips and waxing (for example in USDA PRAs) was not retained here as a mean to screen pests, because it is not known if all citrus fruit entering the EU are subject to these processes.

All *Citrus* fruits are sensitive to pressure and impact, and are tranport conditions are adapted appropriately. Oranges are transported in refrigerated containers, packed in crates, and cartons, and sometimes in net bags (GDV, 2016a). Crates and cartons are mentioned for mandarins and clementines (GDV, 2016 b & c).

- Duration of storage and conditions of transport. Mandarins spoil more quickly than other *Citrus* fruit. Storage in controlled atmosphere may be used to extend the life of oranges, but not for mandarins and clementines. Species and varieties vary in their sensitivity to chilling damage. Generally, the quality of oranges and mandarins is impaired below 4°C and above 25°C (GDV, 2016a, b & c). GDV (2016a, b & c) mention ranges of transport temperatures as follows: 5-10°C for oranges; 0-8°C for mandarins (noting considerable variation depending on variety and country of origin); 6-9°C for clementines. The maximum durations of storage and transport are indicated below (GDV, 2016a, b, with references). Arpaia and Kader (1999a) indicate that oranges can be stored for up to 3 months at 3-8°C, depending on cultivar, maturity-ripeness stage at harvest and production area (some cultivars can be kept at 0-1°C, others at high temperatures, e.g. 9°C). Arpaia and Kader (1999b) indicate that mandarines and tangerines can be stored at 5-8°C for 2 to 6 weeks, depending on cultivar, maturity-ripeness stage at harvest and production area used.

Temperature (RH) Duration					
Oranges	Mandarins	Clementines			
16 weeks at 6-10°C (85-90% RH)	8 weeks at 4-6°C (85-90% RH)	12 weeks at 6-9°C (85% RH)			
8-10 weeks at 3°C (85-90% RH)	6 weeks at 6-8°C (ca. 90% RH)	2-4 weeks at 4.4°C			
(Navel oranges from Spain)	5-8°C (85-90% RH)				
4-8 weeks at 7.2°C (85-90% RH)	2-4 weeks at 4.4°C (85-90% RH)				
Extended duration if controlled					
atmosphere (10% O2, 5% CO2)					
1.1-7.2°C depending on variety					

The time of storage and transport may be several weeks to months, at temperatures that are lower than the temperatures in the field at origin, and this may affect the survival of pests in consignments.

- *EU Marketing Standard.* EU (2011) makes requirements for *C. limon, C. reticulata* Blanco (including satsumas *C. unshiu*, clementines *C. clementina*, common mandarin *C. deliciosa*, and tangerines *C. tangerina*) and hybrids, and oranges *C. sinensis.* This includes provisions for quality (e.g. ripeness, size), packing and marking, verified through conformity checks at import. Specific requirements are that fruit should be: clean, practically free of any visible foreign matter; practically free from pests; free from damage caused by pests affecting the flesh. It allows for a short (not wooden) twig with some green leaves adhering to the fruit (but this is forbidden from non-EU countries in EU Directive 2000/29). The use of any substance tending to modify the natural characteristics of the citrus fruit, especially its taste or smell, is prohibited (but use of preservatives are allowed provided they meet EU provisions).

- Existing EU phytosanitary requirements influencing association of the pests with the pathway, and EU regulated pests in broad categories. The fruit should be free from peduncles and leaves, and practically free from pests (see above). In addition, the following broad categories are regulated in EU Directive 2000/29 (Annex I/A1), and any species under them were considered as already regulated in the EU: 'Tephritidae (non-European)', 'Cicadellidae (non-European) known to be vector of Pierce's disease (caused by *Xylella fastidiosa*)'). Vectors of *X. fastidiosa* are also addressed under emergency measures in Commission Implementing Decision (EU) 2015/789 of 18 May 2015. Other general categories of regulated pests in the EU Directive do not apply to *Citrus* fruit. Note: plants of Citrus, Fortunella, Poncirus, and their hybrids (other than fruit and seeds) are prohibited (Annex III).

2. Methods as used for *Citrus*

2.1 Step 1

The *Methods for the preparation of alert lists of pests for individual fruit species*³ ('Methods' thereafter) were used, with the following adjustments:

- For pathogens, USDA (2015) provides a global list of *Citrus* pathogens and was used to establish a first list of pathogens. Relevant species were further studied. Only species assessed as being pathogens of *Citrus* in USDA (2015) were retained (i.e. not saprophytes, wood decaying fungi, weak host-pathogen association, or not plant pathogens). However, many sooty moulds fungi considered non-actionable in USDA (2015) were nevertheless listed.
- Pests of all *Citrus* were recorded, with a focus on oranges and mandarins. Many pests attack several *Citrus* species.
- Because of the EU requirement forbidding the presence of peduncles and leaves for *Citrus* fruit from third countries, the screening focused on pests that are on the fruit itself. When information supported that a pest was associated only with leaves or peduncles, the assessment stopped and no further information was sought.

2.2 Step 2

The *Methods* were used, with the following adjustments:

- A questionnaire was sent to the NPPOs of EPPO countries to identify pests not yet present and considered to be important by experts in countries. The suggestions received are given in Annex 3 and were taken into account at Step 2. More attention was given to these pests during the screening.
- Pests present only indoors in the EU (where such information was available) were retained for further consideration.
- It was decided to not use the level of polyphagy (C) and the climatic similarity (D) for selecting pests for the Alert List, and these were not rated. Regarding climatic similarity, one reason was that some pests of tropical areas are known to have established in the EU, such as *Penthimiola bella* (Cicadellidae) (Zina et al., 2013). In addition, there was no time left to carry out the rating for all pests on the Step 2 List.
- Several pests were associated with *Citrus* fruit in trade, being intercepted on this commodity, but were not pests of *Citrus*. The sub-rating 'c' (contaminants) was used (criterion A).
- A subrating (fp) was used for fruit-piercing moths of the family Noctuidae attacking *Citrus* fruit. For these species, only adults attack *Citrus* and there was evidence that *Citrus* spp. are not larval hosts. These species fulfilled the criterion for association of a life stage with fruit (A2t), but adults are unlikely to remain associated with *Citrus* fruit at harvest (see section 3.2.6). The association with fruit was rated as 'A2tu (fp)'. These species were subsequently quickly studied to identify those with a major economic impact. All were eventually rated NO2 (not associated with fruit). Details are given in section 3.2.6.

As explained in the *Methods*, the search for information stopped as soon as a pest did not meet basic criteria, or a rating was attributed that would exclude the pest from the Alert List (e.g. A3 – associated with green parts; B2 – present in the EU). Consequently, the data gathered for pests other than those retained for the Alert List is still preliminary and partial (in particular the distribution data or host list may be incomplete or erroneous). There may be inconsistencies between pests as to in which column the data is mentioned. This is especially the case for pests not rated A1/A2 (not associated with the fruit itself), but also those rated A1/A2 that would not be retained for the Alert List (e.g. E3 – low economic impact). Finally, editing and consistency adjustments were done only for the pests retained for the Alert List.

Ratings in the Step 2 List may sometimes seem inconsistent between species, but they were based on the information available. It was not always possible to judge whether there is a real difference between species or whether the relevant the information was not found. Different sources of information may lead to different ratings, so pests may have been rated differently depending on the information available to each assessor. Only for the pests retained in several Alert Lists was all information cross-checked for consistency.

2.3 Step 3

The selection system described in the *Methods* was applied to select pests for the Alert List, with the following adjustments:

- Once a draft Alert List was compiled containing pests from relevant categories, the climatic similarity was rated in order to identify pests with a low climatic similarity (0), and consider whether they should be maintained on the Alert List. The pests concerned were eventually retained.

³ Available at https://upload.eppo.int/download/103o7b00f8216

- No pests were 'handpicked' from categories other than those agreed in the Methods.
- All pests selected for the Alert List had as host species of mandarin and orange, or *Citrus* spp.

The combinations of criteria used to build the *Citrus* Alert List are presented in Annex 4. It corresponds to that described in the *Methods*.

3. Results and their discussion

3.1 Considerations on pests listed at Step 1 and Step 2, and selected for the Alert List

3.1.1 Step 1 List

1545 pests were listed at Step 1.

The following were excluded from further consideration (some for several reasons, but only one is mentioned below):

- 124 already regulated in the EU (category NO1)
- 333 no possibility of association with the fruit pathway (category NO2)
- 286 present in the EU (category NO3)
- 22 not pests of Vaccinium (category NO4)
- 76 other reasons (e.g. natural enemy, not a pest of any crop, or pests mentioned at genus level in interceptions, or cases impossible to analyze) (category NO5)
 - → Consequently, **704** pests remained for consideration at Step 2.

3.1.2 Step 2 List

At Step 2, several of the 704 pests retained were identified as being synonymous, and additional pests were found in the literature. Eventually, **778** pests were rated at Step 2, belonging to the following pest groups:

The following pests were excluded from consideration for the Alert List:

- 2 already regulated in the EU (NO1). These were one fungus and one Cicadellidae vector of *Xyllella fastidiosa*, covered under the EU Directive 2000/29 as 'Cicadellidae (non-European) known to be vector of Pierce's disease (caused by *Xylella fastidiosa*)'.
- 274 no possibility of transport on the fruit pathway (category NO2). Many of these were associated to leaves or stems. At Step 1, these had not been excluded because the association with fruit often requires more check than the 1-2 publications available. At Step 2, association with fruit was further checked.
- 70 present in the EU (category NO3) (see also section 3.2.3).
- 12 not pests of *Citrus* (category NO4)
- 21 other reasons (especially synonyms of pests already listed and cases impossible to analyze) (category NO5)
- 10 contaminants (marked A'c') (but associated to *Citrus* fruit in trade, and therefore briefly discussed in section 3.2.6).

Consequently, **389** pests remained for consideration for the Alert List, all having some likelihood of association with *Citrus* fruit (see list in Annex 5 and Citrus deliverable xls file).

The 389 pests belonged to the categories and insect orders (the most numerous class) below.

Among the 389 pests remaining for consideration for the Alert List, 'special' categories were:

- 111 pests of unknown impact (rated EU). Of those, 14 have either been intercepted or are known to be invasive, but the low mobility of life stages associated with fruit excluded them from the Alert List, or the association with fruit was unknown.
- 27 pests of low impact (rated E3).
- 17 that had a higher economic importance in the past (marked 'h').
- 6 that are known vectors of pathogens (marked 'v').

All pests excluded from further consideration at Step 1 or Step 2 are listed in Annex 6. This includes all 'NO' categories and contaminants. This list is also given in the Citrus deliverable xls file.

3.1.3 Alert List

The selection system in section 2.3 was applied in order to select pests for the Alert List.

 \rightarrow Consequently, **36** pests were selected on the Alert List (given as Annex 7).

It is worth noting that no pathogen was selected for the Alert List.

The 36 pests are divided as follows:

- 8 Part 1 Pests with high economic importance and more likely to transfer
- 28 Part 2 Pests with lesser economic importance and more likely to transfer, or high economic importance but less likely to transfer

3.1.4 Possible gaps in data and pests missing from the lists

A large number of organisms were identified at Step 1 and additional organisms were identified at Step 2. However, the study is not a complete list of pests of *Citrus* that do not occur in the EU, and it is certain that some pests have not been found. In particular, the searches relied extensively on the Internet to find information, and some earlier publications, or publications from some areas may be less accessible.

Among the pest categories considered, there was a good coverage of all groups in terms of compiling a list of pests, but it was difficult to find basic information for some species. 82 of 111 pests with an unknown impact were fungi or Hemiptera.

The world coverage, in terms of identifying pests of *Citrus* was clearly more complete for North America, Oceania, Argentina and Chile. An indication of the overall geographical coverage of sources is indicated in Table 7 (apart from CABI CPC and EPPO GD, which cover most regions). The type of sources only refer to those specific to countries; in all cases pests may also have been be covered across regions in global databases (e.g. fruit flies, fungi, thrips, tortricids, etc.).

Table 7. Coverage of the lists of pests

Region	Coverage	Type of sources
North	Good.	Numerous scientific publication, cropping
America		advice, pest management advice, books,
		databases
South	Good for Argentina, Chile, Brazil, probably also Uruguay. Partial	Scientific publications, inventories of pests,
America	for the rest of South America (where some exports are mentioned	cropping advice, pest management advice,
	from Colombia, Peru).	PRAs from other regions
Central	Probably incomplete	Scientific publications and some mentions in
America		publications from other regions
Caribbean	Probably incomplete	Mostly publications about other regions
Africa	Probably good for South Africa. Partial for others. Few pests were	Scientific publications, information on other
	identified from Morocco, Tunisia and Algeria that are not already in	crops for polyphagous pests.
	the EU (<5), but about 20 for Egypt.	
Asia	Partial. Data probably lacking for Iran and Pakistan (which export	Scientific publications, publications on other
	to the EU), for China and Korea (because many publications were	regions, PRAs from other regions
	in Chinese/Korean and could not be used by the assessor), and	
	the rest of Asia (not major exporters to the EU). Japan is well	
	covered, but does not export to the EU.	
Near East	Probably good. Amongst the pest considered for the Alert List, only	Scientific publications, publications on other
	few were present in Turkey or Israel (major exporters) and not yet	regions, EPPO information
	in the EU. 3 of them (present in Israel) are on the Alert List	
Oceania	Good for Australia and New Zealand, incomplete for others.	Scientific publications, cropping/pest
		management advice, PRA from other regions
Europe	Few non-EU European countries export to the EU. Pests were	-
	assumed to be similar to those in the EU and no specific searches	
	were conducted. Data is possibly lacking for Russia.	

3.2 Other findings of interest during the preparation of Alert Lists

The following elements arose in the framework of the study.

3.2.1 Pest already regulated in the EU

Many pests regulated in the EU were identified at Step 1. The EU Directive 2000/29 makes specific requirements for *Citrus* fruit in relation to: *Xanthomonas campestris* (all strains pathogenic to *Citrus*), *Cercospora angolensis*, *Guignardia (Phyllosticta) citricarpa* and *Tephritidae* (non-European). *Citrus* fruit are also subject to a requirement for inspection prior to export, and for absence of peduncles and leaves when originating from third countries.

58 species of non-European Tephritidae were identified, including many that are not mentioned by name in the EU Directive 2000/29. Many species belonged to the genera *Anastrepha, Bactrocera, Ceratitis* and *Dacus*, and a few to other genera (*Celidodacus, Dirioxa, Perilampsis, Tetreuaresta, Tomoplagia, Trirhithrum*). Tephritidae were excluded at Step 1 as already regulated in the EU, and the possible association of each species with *Citrus* fruit was not studied, nor their economic importance.

3.2.2 Pests recommended for regulation by EPPO

Only two species of the Step 2 List are on the EPPO A1 or A2 Lists of pests recommended for regulation. *Maconellicoccus hirsutus* (EPPO A2 List) is present in Cyprus and was therefore not retained for the Alert List. *Thaumatotibia leucotreta* (EPPO A1 List) was added to the Alert List; it is in the process of being regulated in the EU, but this had not happened to date (September 2016).

3.2.3 Pests present in the EU, or present only indoors in the EU

285 pests were identified as already present in the EU at Step 1 and another 70 at Step 2. This included major *Citrus* pests already introduced into the EU. The assessment of presence in the EU, and whether a pest was established, was not always straightforward. A level of uncertainty is attached to the assessment in case of taxonomic difficulties (especially for fungi or scale insects). Many sources had to be consulted to ascertain the presence in the EU. For insects, the assessment of presence relied heavily on Fauna Europeae (which does not indicate sources), and for fungi on Farr and Rossman (2015). In both cases, additional searches were made in case of ambiguity (i.e. when only few countries were indicated).

An attempt was also made to differentiate pests that are present only indoors in the EU, in order to not exclude them and identify possible risks for *Citrus* production, should such pests move to outdoors crops or be newly introduced outdoors. There are known examples of pests that were first introduced indoors, and later reached Citrus orchards. For example, Chrysomphalus aonidum was initially known as a pest of ornamentals indoors; it was first recorded on Citrus trees outdoors in 1999, and is currently established in Citrus orchards in several European countries (Pellizzari and Porcelli, 2014). Many Citrus pests identified as found only indoors in the EU were scale insects introduced with/on ornamentals (especially to botanical gardens). No such pests eventually qualified for the Alert List. It is noted that the risk of their reaching Citrus or other crops in the field is possibly higher from their current distribution indoors, than through introduction via fruit consignments. It was sometimes difficult from the data available to determine whether a pest had been detected only indoors, and a complete assessment would have required more time than available for this screening. For example, Ceroplastes cirripediformis, a serious pest of various fruit crops and ornamentals in other parts of the world, is recorded from Greece and Italy, and was excluded from further consideration; it was not possible to determine from the few references available if it was present only indoors or also outdoors. Aspidiotus destructor, a major pest of coconut and mango, is reported in six EU countries, presumably only indoors on ornamentals; however, no details were available for some of these records. Similarly, *Pseudococcus cryptus*, introduced in the 1930s into Israel where it is a pest of *Citrus*, is reported from Cyprus and Spain; however, it was not clear if it was present outdoors and on *Citrus* in these countries.

A few pests of interest with a restricted distribution in the EU are indicated in Table 8.

Table 8. *Citrus* pests with a very limited distribution in the EU (no damage have been reported to date in the EU countries where these pests are present)

group)	Distribution	Basic Information	Hosts other than Citrus
Pathogens			
*Mycosphaerella aurantia (Ascomycota)	Australia, Uruguay, worldwide distribution not searched. In the EU: Spain (recorded on eucalyptus).	Not well described regarding its phytosanitary impact. Intercepted in the EU on <i>Citrus</i> fruits. Some authors consider it as a synonym of <i>Amycosphaerella africana</i> , only reported on eucalyptus (on leaves).	Eucalyptus
Insects			
Araecerus fasciculatus (Coleoptera: Anthribidae)	Asia, Africa, Caribbean, Americas, Oceania. In the EU: 4 countries in CABI CPC (France, Germany, Italy, UK), but the reference relates to stored products. Several other records in the literature appear to refer to findings on stored products. However, it is reported as being present in Northern and peninsular Italy in one publication, and in Malta in another.	In the early 1900s, considered primarily a pest of stored products; from the 1920s onward, reported to attack living plants and fruits (e.g. soft tropical fruits, coffee berries, sugarcane). Reported as a citrus pest in orchards from the 1980s-90s in the USA, South Africa, Swaziland and Japan. Larvae feed inside maturing fruits, and also infest flowers and buds. On citrus, eggs may be in fruit that has been slightly damaged, and occasionally in unmarked fruit. The pest can complete its life cycle in the fruit. Considered tropical and subtropical, and not surviving well in cooler climates outside storage facilities.	Polyphagous, incl. <i>Carica</i> papaya, <i>Mangifera indica</i> , <i>Saccharum officinarum</i> , <i>Coffea</i> , <i>Helianthus annuus</i> , <i>Capsicum</i> , <i>Oryza sativa</i> . Also dried food (incl. fruits, nuts, mushrooms, herbs and spices), preserved plant material.
Aspidiotus destructor (Hemiptera : Diaspididae)	Worldwide in tropical and subtropical areas. Present in nearly all coconut growing countries; in more northern regions, found only in protected conditions. For Europe, records for France, Italy, Germany,	Feeds on sap from leaves, petioles, peduncles and fruits causing discoloration, depressions, and tissue distortions on leaves. Infestation on fruit reduces quality. Major pest of coconut, and an economic pest of mango in Asia, Africa, and South America.	Over 100 hosts in 60 families, incl. Cocos nucifera, Mangifera indica.

* indicates pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (see 3.2.4)

Pest (taxonomic	Distribution	Basic information	Hosts other than Citrus
group	Hungary, Slovenia, UK,		
Atherigona orientalis (Diptera: Muscidae)	Asia (incl. Israel), Oceania, Africa, USA, Central and South America, Canary Islands. In the EU: Cyprus.	Possibly mostly a saprophagous pest, and not clear if phytophagous in some cases. Considered as a phytosanitary risk in some references.	Polyphagous, incl. Solanum lycopersicum, Capsicum, Oriza sativa, Helianthus annuum, Prunus persica, Triticum
Aulacaspis tubercularis (Hemiptera: Diaspididae)	Africa, Asia, Caribbean, South America, Oceania, Canary Islands, Madeira. In the EU: Italy ('introduced and acclimatized'). One outbreak on mango in Spain	Significant pest of mango, feeds on leaves and fruits. Known interceptions on mango fruit.	Polyphagous, incl. Mangifera indica, Carica papaya, Cucurbita, Persea americana, Cinnamomum.
Ceroplastes cirripediformis (Hemiptera: Coccidae)	Americas and Caribbean, Egypt, Indonesia, Philippines, Marshall Isl., Wake Isl. In the EU: Greece,Italy.	Reported as a pest of <i>Psidium guava</i> , <i>Citrus</i> , ornamentals, avocado in various parts of the world. No data found on hosts and pest status in Italy and Greece.	Polyphagous incl. Vaccinium, Coffea arabica, Ipomoea batatas, Manihot esculenta, Tamarindus indica, Psidium guava, Diospyros kaki, many ornamentals, Vitis vinifera, Pinus caribaea var. bahamensis
Penthimiola bella (Hemiptera: Cicadellidae)	Africa, Asia (incl. Israel), Argentina, Portugal. Introduced into several countries (incl. Cape Verde, Madagascar, Israel, Lebanon, Argentina, Portugal).	On leaves and fruits. Causes feeding damage. Oviposits on fruits and eggs can survive transport over long distances and time (suspected mode of introduction into Portugal). Economically important pest of <i>Citrus</i> in South Africa. Up to 40% damaged fruit on avocado, 19-57% on <i>Citrus</i> .	Persea americana
*Pseudococcus cryptus (Hemiptera: Pseudococcidae)	Asia (and Near East), Africa, Oceania, Central and South America, Caribbean. In the EU : Cyprus (indirect record), Spain (one record, on Viburnum)	Heavy infestations cause leaf and fruit drop and the entire tree can become covered in sooty mold. In Israel, introduced in 1937, now under biological control in <i>Citrus</i> .	Highly polyphagous, 72 genera in 42 families, incl. <i>Mangifera</i> <i>indica</i> , <i>Annona muricata</i> , <i>Cocos</i> <i>nucifera</i> , <i>Phoenix dactylifera</i> , <i>Dahlia</i> , <i>Glycine max</i> , Fagaceae, <i>Persea americana</i> , <i>Punica</i> <i>granatum</i> , <i>Morus</i> , <i>Musa</i> , <i>Psidium guajava</i> , <i>Jasminum</i> , Orchidaceae, Bambusa, <i>Litchi</i> <i>chinensis</i> , <i>Vitis vinifera</i>

3.2.4 Pests proposed in answer to the EPPO questionnaire on pests of concern for *Citrus*

All specific proposals made in answer to the EPPO questionnaire on pests of concern for *Citrus* are listed in Annex 3. Two other countries had no proposal other than pests already regulated in the EU. One non-EU country sent its list of regulated pests, which could not be used as there was no time available to perform the review of all listed pests to identify those associated with *Citrus*.

Many pests proposed were eventually not retained for the Alert List because they were not associated with *Citrus* fruit or were present in the EU, in countries other than the one proposing them. Ten of the pests proposed met all the criteria and are on the Alert List.

The general categories of non-European Aleyrodidae and non-European Coccoidea were outlined in the answers, and they were kept in mind when assessing individual species. Many species in these groups were identified at Step 1 and 2, and several had been proposed in answer to the questionnaire. At Step 2, there were:

- 76 Aleyrodidae of *Citrus* not present in the EU. For many of them, data were lacking on their biology, distribution and damage. There was also often a lack of evidence of association to *Citrus* fruits. Of the species proposed in answer to the questionnaire, *Orchamoplatus citri* causes heavy losses due to downgrading of fruit (for the presence of sooty moulds) in some countries where it occurs, but there was no evidence of the presence of life stages on fruits. Similarly *Paraleyrodes citri* was not retained because

the information pointed to a minor impact where it occurs. Many species were rated as possibly associated with *Citrus* fruit but had a moderate impact (on citrus or other hosts) and non-mobile life stages (lower likelihood of transfer), and consequently were not retained on the Alert List: *Aleurocanthus citriperdus, Aleurocanthus husaini, Aleuroclava citrifoli, Aleuroclava psidii, Aleurodicus dispersus, Aleurodicus dugesii, Aleurodicus floccissimus, Aleuronudus manni, Aleurothrixus porteri, Bemisia giffardi, Dialeurolonga elongata, Orchamoplatus caledonicus, Orchamoplatus mammaeferus, Paraleyrodes bondari, Paraleyrodes citricolus, Paraleyrodes singularis, Trialeurodes variabilis (see also 3.2.5).*

- 76 Coccoidae of *Citrus* not present in the EU, belonging to the families Cerococcidae, Coccidae, Diaspididae, Kerriidae, Margarodidae, Monophlebidae, Ortheziidae, Pseudococcidae, Putoidae. Four species were eventually retained for the Alert List. Many other species had an association with *Citrus* fruit, but they had a moderate impact (on citrus or other hosts) and non-mobile life stages, and were not retained: *Aonidiella comperei*, *Aonidiella orientalis*, *Aulacaspis citri*, *Aulacaspis crawii*, *Cerococcus muratae*, *Ceroplastes rubens*, *Chloropulvinaria aurantii*, *Chloropulvinaria polygonata*, *Coccus viridis*, *Drosicha corpulenta*, *Drosicha mangiferae*, *Fiorinia proboscidaria*, *Ischnaspis longirostris*, *Morganella longispina*, *Mycetaspis personata*, *Phenacoccus pergandei*, *Pinnaspis theae*, *Planococcus kenyae*, *Planococcus kraunhiae*, *Planococcus iceryoides*, *Selenaspidus articulatus* (see also 3.2.5).

3.2.5 Pests of moderate impact but without mobile life stages

A number of *Citrus* pests were assessed at Step 2 as having a moderate impact, and they did not have mobile life stages (lower likelihood of transfer); consequently they were not retained. This included many pests that are intercepted on fruit in trade. The large majority were whiteflies or scale insects, with a few acari and fungi, 1 virus and 1 algae. A few pests are shown in Table 9.

Table 9. Pests of *Citrus* assessed to have a moderate impact, and not retained for the Alert List because they do not have mobile life stages (lower likelihood of transfer from fruit commodities)

* indicates pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (see 3.2.4)

Pest (taxonomic group)	Distribution	Basic information	Hosts other than Citrus
Colletotrichum siamense (Ascomycota)	Australia, China, Nigeria, South Africa, Thailand, USA, Vietnam	On Citrus, causes leaf and fruit spot. Yield losses of 15% reported on C. reticulata in China.	Polyphagous incl. Persea americana (fruit rot), Pistacia vera, Carica papaya, Coffea arabica, Capsicum annuum, Vitis vinifera (leaves), Fragaria × ananassa (crown), Malus domestica (fruit), Jasminium sambac
*Oidium tingitaninum (Ascomycota)	Asia, Uganda, Mexico, USA, Central America, Caribbean, Argentina, Brazil	On leaves, twigs and young fruit. In India in severe attacks defoliation leads to decline and death of plants. Severe on young emerging shoots in nurseries and orchards. Minor in California. Distribution is not well known due to confusion with <i>O. citri</i>	Not searched
Acarida			
Eutetranychus africanus (Acarida: Tetranychidae)	Africa, Asia, Papua New Guinea, Australia	Economically important <i>Citrus</i> pest, also attacking a wide variety of other crops.	Highly polyphagous incl. Solanum melongena, Vitis labrusca, Eriobotrya japonica, Malus domestica, Prunus domestica, Prunus persica, Rosa, Plumeria, Cordia, Ficus carica, Eucalyptus globulus
Insects			
Aleurodicus dugesii (Hemiptera: Aleyrodidae)	Central America, Mexico, USA (introduced, and has spread), Venezuela, Indonesia, Pakistan	Feeds mostly on leaves. However, fruit is a pathway for many other whiteflies. Feeding damage leads to defoliation, stunting and plant death. Causes serious damage to ornamental plants. Mostly a pest of ornamentals, but also affects some varieties of <i>Citrus</i> and avocado. Known interceptions on many plant genera.	Highly polyphagous with over 200 plants in 35 families, incl. <i>Annona</i> , <i>Bauhinia</i> , <i>Begonia</i> , <i>Coleus</i> , Cucurbitaceae, <i>Euphorbia</i> <i>pulcherrima</i> , <i>Gossypium hirsutum</i> , <i>Hibiscus</i> , <i>Morus</i> , <i>Musa</i> , <i>Persea</i> <i>americana</i> , <i>Strelitzia nicolai</i>
Aleurodicus floccissimus (Hemiptera: Aleyrodidae)	Mexico, South America, Canary Islands (Spain)	Causes direct feeding damage to plants and produces large amounts of white waxy secretions and honeydew, on which sooty	Polyphagous, incl. Arecaceae (incl. coconut), Musaceae (incl. <i>Musa</i> , <i>Strelitzia</i>), <i>Carica papaya</i> , <i>Euphorbia</i>

		moulds can develop. Present in the Canary Islands since 1965, where it abruptly increased in numbers to become a major problem on bananas at the end of the 1990s.	pulcherrima, Ficus, Hibiscus rosa- sinensis, Mangifera indica, Psidium guajava, Nerium oleander
Aleurocanthus citriperdus (Hemiptera: Aleyrodidae)	Asia	Pest of <i>Citrus</i> in China. No specific information found on the parts of plants infested, but the related species <i>A</i> . <i>spiniferus</i> spreads through the movement of nursery stock and infested fruits. Known interceptions.	Coffea
*Aonidiella orientalis (Hemiptera: Diaspididae)	Most continents.	Feeds mostly on leaves. Occasional cosmetic damage on fruit. Heavy infestations may result in yellowing and defoliation, dieback of small twigs and premature fruit drop. Serious pest of <i>Citrus</i> (Omani lime, sweet lime and grapefruit) in Iran and Asia, also pest on coconut, areca nut, papaya, tamarind, mango. Intercepted in Europe.	Highly polyphagous, incl. Annona, Carica, Prunus, Mangifera indica, Vitis vinifera, Tamarindus indicus, Camellia sinensis, Arecaceae incl. Areca, Cocos nucifera.
Ceroplastes rubens (Hemiptera: Coccidae)	Africa, Caribbean, USA, Asia, Oceania.	Generally feeds on leaves and twigs, reported feeding on citrus fruit. A pest of forestry and fruit crops, incl. <i>Citrus</i> , in some countries. Intercepted in the EU, and found in Budapest botanical garden. Not considered present outdoors in the EU.	Highly polyphagous, incl. <i>Camellia</i> , <i>Chrysanthemum</i> , <i>Ficus</i> , <i>F. carica</i> , <i>Helianthus</i> , <i>Malus</i> , <i>Mangifera indica</i> , <i>Morus alba</i> , <i>Olea</i> , <i>Persea</i> , <i>Pinus</i> , <i>Prunus</i> , <i>Pyrus</i>
Drosicha corpulenta (Hemiptera: Monophlebidae)	China, Korea Rep., Korea Dem. Rep., Japan, Russia (Khabarovsk, Primor'ye)	On fruit and leaves. Reported as a serious pest of willow and apple in China (references from 1950s and 1990s), but no additional information found.	Polyphagous, including <i>Cupressus</i> , <i>Diopyros</i> , <i>Juglans</i> , <i>Ulmus</i> , <i>Cornus</i> officinalis, Castanea vulgaris, Quercus, Ficus carica, Malus, Prunus persica, Pyrus sinensis, Sorbaria sorbifolia

3.2.6 Fruit-piercing Noctuidae for which only adults are associated with *Citrus* fruit

75 species of fruit-piercing Noctuidae for which only adults are associated with *Citrus* fruit were identified. For all these species, eggs and larvae are on the leaves of their host plants (which do not include *Citrus* and, for the most part, are wild plants that do not occur naturally in the EU). There is no evidence that eggs may contaminate fruits of non-hosts. Adults feed on fruit of *Citrus* (and other fruit species), but are highly mobile. In addition adults of most species are nocturnal and are large. Finally, evidence of international movement, other than by natural spread, are scarce and not linked to fruit. The only example found was *Othreis* (*Oraesia*) *excavata*, recently found in Hawaii, probably introduced on its larval hosts.

Given the above, adults were considered unlikely to be associated with fruit at harvest, and these species were not retained for the Alert List (rated as NO2). Their impact was nevertheless studied at Step 2 (based on the CABI CPC only) to identify economically important species. Only two species would have met the criteria for the Alert List: *Oraesia excavata*, with a moderate impact but introduced into Hawaii, and *Eudocima phalonia*, which has a high impact and is regulated in many countries worldwide. In the literature, figures of damage for fruit-piercing moths are generally combined. However, specific figures on impact are available for *E. phalonia* (e.g. primary damage of 50-70% on *Citrus* and 70-90% on longan in Thailand; 95% of *Citrus* fruit and 100% of tomatoes damaged in New Caledonia in outbreak years (although it is minor in regular years); entire crops of Navel oranges damaged during outbreaks in Queensland, Australia; 40-60% of citrus fruits damaged in China). Most other species were either minor or not mentioned in the CABI CPC, i.e. rated with unknown importance.

Two Noctuidae species whose larvae may attack *Citrus* were identified at Step 2. *Egira curialis* was selected for the Alert List, and *Tiracola plagiata* was not (association of larvae with *Citrus* fruit was uncertain and it is mainly a pest of *Lablab purpureus*).

Plants for planting are a potential pathway for virtually all pests on the Alert List and Step 2 List. The EU Directive 2000/29 prohibits the import of plants of *Citrus*, *Fortunella*, *Poncirus*, and their hybrids (other than fruit and seeds) from third countries, which partly prevents the introduction of these pests. However, they may be introduced on plants for planting of hosts that are not regulated in the EU. The current general requirements for these other hosts (such as in relation to soil, growing media, trees and shrubs) would not cover all life stages of these pests and any inspections would also not target specific pests.

A few major *Citrus* pests likely to be transported mostly on pathways other than fruit (in particular on plants for planting) are highlighted in Table 10 (although it is not excluded that some of the pests may occasionally become associated to fruit consignments)

Several other pests appeared to be important in relation to other crops or for other reasons, and the risk of introduction is higher on their other hosts. Some of these pests are presented in the document *Other pests of interest identified during the study of selected crops*.

Table 10. Citrus pests that may be transported on pathways other than Citrus fruit

* indicates pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (see 3.2.4)

Pest (taxonomic group)	Distribution	Basic information	Hosts other than Citrus
Pathogens			
Citrus chlorotic dwarf-associated virus	China, Turkey (Eastern Mediterranean region)	Most serious disease of citrus in the Eastern Mediterranean region of Turkey (losses estimated to 50% on grapefruit - decrease number and size of fruits). In China, since the first finding in 2008, the disease has spread fast and widely in Dehong area (Yunnan). Vectored by <i>Parabemisia myricae</i> , and <i>Dialeurodes citri</i> may also be a vector. Also spread by grafting and splash dispersal.	None found in the literature
Cryptosporiopsis citricarpa (Ascomycota)	China	On branches, trunk. Considered as a destructive new disease. Hosts are <i>Citrus unshiu</i> , <i>Fortunella margarita</i> .	None found in the literature
*Indian citrus ringspot virus (Alphaflexiviridae: mandarivirus)	India	A pest of <i>C. sinensis</i> , recognized distinct from citrus ringpost virus in the 2000s. 10-100% incidence in India. On Kinnow mandarin (<i>Citrus</i> <i>nobilis</i> x <i>Citrus deliciosa</i>), reduced number and weight of fruits by 45 and 55% respectively graft- and mechanically transmissible, no known vector.	None found in the literature
*Mycosphaerella citri (Ascomycota)	Asia, Americas and Caribbean, Egypt, Australia, Samoa	On leaves and twigs. Fruit alone is not a pathway (<i>M. citri</i> may be present on fruit, but does not sporulate on fruit). Not seedborne or budwood transmitted and not transmitted by vectors. Yield reduction of 25% for oranges and 45% for grapefruit have been documented in Florida.	Acacia mangium, Musa, Aeglopsis, Fortunella, Murraya, Poncirus
Insects			
*Ceroplastes destructor (Hemiptera: Coccidae)	Africa, introduced to Oceania	On leaves, branches, stems. Honeydew and sooty mould on fruit. A major pest of citrus in Australia in the 1950s-70s, now minor. Became important on <i>C. reticulata</i> in Africa in the 1990s. Introduced to Oceania.	Coffea arabica, Persea americana, Acacia, Actinidia deliciosa, Hibiscus, Prunus armeniaca, Psidium guajava, Pyrus, Solanum,

		Regulated by many countries.	Syzygium
Hypomeces squamosus (Coleoptera: Curculionidae)	Asia	Larvae feed on roots (incl. of citrus); adults on foliage of various plants. Most injurious leaf feeding insect on citrus in Malaysia (1989 reference).	Larval hosts incl. rice, maize, sugarcane, tobacco, cotton; adults feed on more hosts.
Naupactus versatilis (Coleoptera : Curculionidae)	Argentina, Brazil, Paraguay	Eggs beneath the fruit calyx or in the soil, adults feed on green parts and larvae on roots. Larvae cause direct damage to root, and indirect damage by favouring entry of soil-borne pathogens. Citrus root weevils were previously considered as secondary pests, but have become primary in some areas of Minas Gerais and São Paulo, Brazil. <i>N. versatilis</i> is one of the most frequent and abundant citrus root weevils in São Paulo. There is no indication of damage so far, but one publication considers a major threat for <i>Citrus</i> that such species migrate from native plants in natural forests to <i>Citrus</i>	No other hosts found in the literature (but mentioned on "native plants" in Brazil)
Orchamoplatus citri (Hemiptera: Aleyrodidae)	Australia, New Zealand, Malawi, Kenya, Tanzania	On leaves, and produces sooty moulds on leaves and fruits. Minor pest in Australia. In New Zealand, first detected in 2000, and has spread, causing significant downgrading of fruit (up to 90% of mandarin and orange)	None found
<i>Platynota stultana</i> (Lepidoptera: Tortricidae)	Mexico USA. In the EU: Spain (restricted distribution, few occurrences)	On citrus, leaves and fruits. Occasional pest of citrus and serious pest of grapevine in California, where it also causes damage to apple, pear, kiwi, peach, capsicum, cotton. A recent PRA carried out in Spain (where the pest has a limited distribution) establishes the risk of entry on Citrus fruit as low, but high for grapes. Plants for planting are also a possible pathway.	Hosts in over 25 families, incl. Zea mays, Capsicum annuum, Medicago sativa, Prunus persica, Punica granatum, Pyrus, Vitis vinifera
Saissetia neglecta (Hemiptera: Coccidae)	Americas, Caribbean, HongKong	On foliage and stems. Introduced into some countries. Main scale species on citrus in Florida	Highly polyphagous. Hosts in 35 families.
<i>Thrips flavidulus</i> (Thysanoptera: Thripidae)	Asia	Feed on and damages citrus petals and young fruits. Females lay eggs on flower, young fruit and other parts. <i>T. flavidulus</i> is becoming a major pest in many citrus orchards during and after flowering. Fruit scars affect the appearance and quality of citrus fruits.	Polyphagous, incl. <i>Prunus</i> persica, Diospyros kaki, Musa, Eriobotrya japonica.

3.2.8 Pests for which there was insufficient information

For many pests, it was not possible to find information on impact, and there did not fall under categories retained on the Alert List. It may nevertheless be interesting to monitor the situation of some of these pests in the future. A few examples are given in Table 11.

Table 11. Citrus pests for which there was insufficient information

* indicates pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (see 3.2.4)

Pest (taxonomic group)	Distribution	Comments	Hosts other than Citrus
Pathogens			
7 newly described Diaporthe spp. D. biconispora, D. biguttulata, D. discoidispora, D. multigutullata, D. ovalispora, D. subclavata, D. unshiuensis	China	Described on <i>Citrus</i> in China by Huang et al. (2015). No other publications or records found for these species. No indication found of parts of plants attacked (but some other <i>Diaporthe</i> species cause stem- end rot of fruit), biology, distribution and impact.	None found in the literature.
*Passalora loranthi (Ascomycota)	China, Mozambique, Cameroon	Intercepted on <i>Citrus</i> fruit in the EU. Lack of information on impact.	Musa and others.
Insects			
Udinia catori and U. farquharsoni (Hemiptera: Coccidae)	Africa	No details found on the biology. Both species intercepted on <i>Mangifera indica</i> fruits, and various other genera and commodities. Mentioned as potentially important, but no information found on their current impact.	Mangifera indica, Ficus, Theobroma cacao, etc.

3.2.9 Contaminants

Ten pests at Step 2 were contaminants of *Citrus* fruit in trade (i.e. not pests of *Citrus* but intercepted in consignments of *Citrus* fruit). Among these, Table 12 lists four pests, as well as four ants that attack plants and may also cause social damage.

Table 12. Contaminants of Citrus fruit

* indicates pests proposed in answer to the EPPO questionnaire on pests of concern for Citrus (see 3.2.4)

Pest (taxonomic group)	Distribution	Basic information
Anopolepis gracilipes (Hymenoptera: Formicidae)	Asia, East Africa, Brazil, Chile, Mexico, some Caribbean isl., Australia, most Pacific isl.	Broad range of habitats. Has colonized agricultural systems such as <i>Citrus</i> , cinnamon, coffee, coconut. Possible nuisance in horticulture. Can be destructive by removing roots around plants. Where abundant, known to prey upon newborn animals. May be a serious nuisance in buildings at high densities. The species has established outside its native range. Worker ants shown to be associated to <i>Citrus</i> fruit while tending honeydew-excreting insects. However they cannot begin a colony/lead to establishment.
Caliothrips fasciatus (Thysanoptera: Thripidae)	China, USA, Mexico.	Reproduces on Fabaceae, adults feed on many other plants. In California, adults overwinter in cavities of navel oranges. Considered a quarantine problem in navel oranges imported into Australia.
Macchiademus diplopterus (Hemiptera: Lygaeidae)	South Africa	Hosts are Poaceae, serious pest of cereals (wheat, oats, barley). Adults aggregate on fruit trees to aestivate (become quiescent to survive hot dry summer). They shelter at the stalk and calyx ends, and sometimes enter apples and pears at the calyx end and sheltering deeper inside the fruit. Numerous interceptions on apple, citrus, nectarine, peach, pear and plum fruits.
*Naupactus xanthographus (Coleoptera: Curculionidae)	South America	A polyphagous pest of <i>Vitis vinifera</i> (major host) and various others (e.g. <i>Citrus, Malus domestica, Prunus, Pyrus communis, Solanum lycopersicum,</i> <i>Solanum tuberosum</i>). Larvae feed on roots of hosts. Serious pest of grapevine and some other fruit crops in Chile and Argentina, and of soyabean in Brazil and Chile. Adults are reported attacking fruit on several species, but this seems to relate more to grapes. Numerous interceptions on fruit of various species in the USA.
Orthorhinus cylindrirostris (Coleoptera: Curculionidae)	Australia	Polyphagous, incl. <i>Vaccinium</i> , <i>Citrus</i> , <i>Vitis</i> , <i>Acacia falcata</i> , <i>Angophora floribunda</i> , <i>Eucalyptus</i> . Larvae tunnel in stems, crowns and roots. On grapevine, adults feed on buds, may ring the bark, and also attack fruit. Considered as a pest of blueberry and grapevine. No evidence found of association with <i>Citrus</i> fruit (apart from one interception in a container of oranges).
Paratrechina longicornis	Not fully searched.	Omnivorous, on live and dead animals, honeydew, fruits, seeds and

(Hymenoptera: Formicidae)	Pacific Isl., Brazil.	househod foods. Worker ants shown to be associated to <i>Citrus</i> fruit while tending honeydew-excreting insects. However they cannot begin a colony/lead to establishment. Intercepted on fresh products, empty containers, timber. Known pest in urban areas in Brazil where it can become abundant indoors. Known to act as a carrier of pathogenic bacteria in hospitals. The species has established outside its native range.
Solenopsis geminata (Hymenoptera: Formicidae)	Asia, Gabon, Liberia, Mauritius, Reunion, Americas, Caribbean, Oceania	Mostly seed feeding, builds nest at the base of citrus trees. Intercepted on fruit and vegetables.
Solenopsis invicta (Hymenoptera: Formicidae)	Asia, North America, Caribbean, South America, Australia. Introduced at least to the USA and Australia, eradicated in New Zealand.	Generalist feeder and forager, also feeds on plants. May tunnel through roots and tubers, feed on above-ground plant parts, fruit and seeds. Can girdle and kill young trees. On <i>Citrus</i> , feeds on flowers, fruit, bark and cambium of young trees, new growth, seeds. Can occur at high densities in citrus orchards and other agricultural systems, and in various habitats such as disturbed and forested area, parks and lawns etc. Worker ants may be associated with fruit consignments. This would not lead to new colonies, but <i>S. invicta</i> is a serious fire ant (stings animals and humans). Successful introduction would be through mated queen ants and colonies, with soil, ballast, plants for planting with soil, hay, colonies on various materials. Since its introduction, has become a major agricultural and urban pest throughout southeastern USA (in particular, major pest of soyabean, also attacking Citrus and other plants).

3.2.10 Were major pests identified?

Many pests of Citrus that are currently not regulated and not present in the EU were identified during the preparation of the Alert List. The process followed was time-consuming, but did allow identifying a large number of pests from various origins, including major pests. As a conservative approach was taken, it may appear that some pests listed on the Alert List are not associated to fruit in trade for reasons that would become clear only if a pest risk analysis was conducted.

4. Conclusion

- Although there are already many pests of *Citrus* in the EU, including introduced pests, many others were identified as being potentially associated with *Citrus* and *Citrus* fruit.
- Pests associated to leaves were all excluded because *Citrus* fruit imported into the EU should be free from peduncles and leaves. However, there is no such requirement within the EU, and such fruit with leaves may constitute a pathway once such pests are introduced into the EU.
- Only 36 pests were retained for the Alert List, but a larger number were potentially associated with *Citrus* fruit. Many were not retained mainly because they did not have mobile life stages. The likelihood of transfer of pests to hosts at destination from the infested fruit consignments would require a more complete assessment, and it is not excluded that some of these many pests may have the capacity to transfer to *Citrus* crops.
- It would be useful that countries record intercepted non-regulated pests on *Citrus* fruit, so that PRAs/specific requirements may be considered for some pests. Such data was already provided for some of the pests proposed in answer to the EPPO questionnaire on pests of concern for *Citrus* (see Annex 3).
- The likelihood of transfer from *Citrus* fruit consignments to hosts are higher if infested fruit consignments are imported into facilities close to where plants are grown. The analysis was not made of whether this is a common practice in the EU. As in the case of the EPPO tomato study, this emphasizes the need to separate import and packing facilities from facilities where plants are produced.
- The Alert List may be used in the framework of EPPO to raise awareness of pests that may be associated with fruit consignments. Relevant information will be presented to EPPO Panels and included in EPPO Global Database.
- Many Tephritidae were identified. They are currently regulated in the EU under general categories. It could be envisaged whether additional major species should be listed by name in the Directive.

5. References (All URLs were accessed in September 2016)

- Note: Each Alert List record has its own reference list (see Annex 7).
- Arpaia ML, Kader AA. 1999a. Orange. Recommendations for Maintaining Postharvest Quality. University of California. Postharvest Technology Center UC. Available from: http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/
- Arpaia ML, Kader AA. 1999b. Mandarin/Tangerine Recommendations for Maintaining Postharvest Quality. University of California. Postharvest Technology Center UC. Available from: http://postharvest.ucdavis.edu/Commodity Resources/Fact Sheets/
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- EPPO GD. EPPO Global database. http://gd.eppo.int
- EU. 2011. Commission Implementing Regulation (EU) No 543/2011 of 7 June 2011 laying down detailed rules for the application of Council Regulation (EC) No 1234/2007 in respect of the fruit and vegetables and processed fruit and vegetables sectors.
- EUROSTAT. Database for EU statistics. http://ec.europa.eu/eurostat
- Farr DF, Rossman AY. 2015. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.arsgrin.gov/fungaldatabases (accessed August 2015)
- GDV. 2016a. Cargo Information: oranges. Transport Information Service, cargo loss prevention information from German marine insurers. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV), Berlin 2002-2016. http://www.tis-gdv.de/tis_e/ware/obst/orangen/orangen.htm
- GDV. 2016b. Cargo Information: mandarins. Transport Information Service, cargo loss prevention information from German marine insurers. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV), Berlin 2002-2016. http://www.tis-gdv.de/tis_e/ware/obst/mandarin/mandarin.htm
- GDV. 2016c. Cargo Information: clementines. Transport Information Service, cargo loss prevention information from German marine insurers. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV), Berlin 2002-2016. http://www.tis-gdv.de/tis_e/ware/obst/clementi.htm
- Hele A. 2006. Australian native citrus wild species, cultivars and hybrids. Fact sheet No: 7/03. Government of South Australia, Primary Industries and Resources SA. www.pir.sa.gov.au/. Available from www.pir.sa.gov.au/factsheetshttp://www.homecitrusgrowers.co.uk/australiannativecitrus/Australian Nativce Citrus.pdf)
- Huang F, Udayangab D, Wang X, Hou X, Mei X, Fu Y, Hyde KD, Li H. 2015. Endophytic Diaporthe associated with Citrus: A
- phylogenetic reassessment with seven new species from China. Fungal Biology, Vol. 119, Issue 5, May 2015, 331-347. Koskinen J. 2015. The citrus pages. http://citruspages.free.fr/home.html
- Mabberley DJ. 1997. A classification for edible Citrus (Rutaceae). Telopea 7(2): 167-172.
- Minagri. 2014. La MANDARINA Peruana. MINISTERIO DE AGRICULTURA Y RIEGO. Peru.
- Pellizzari G, Porcelli F. 2015. Alien scale insects (Hemiptera Coccoidea) in European and Mediterranean countries: the fate of new and old introductions. Phytoparasitica.
- USDA. 2015. Global pest list of Citrus spp. pathogens and an examination of evidence for seed transmission. 27 March 2015. United States Department of Agriculture.
- Webber HJ. 1967. History and development of the citrus industry. Chapter 1 in Volume 1: History, World Distribution, Botany and Varieties. Editors: W. Reuther, H.J. Webber, L.D. Batchelor. University of California Press.

ANNEX 1. Oranges: detailed data on trade (Source: Eurostat) 0 represent quantities below 100 kg

	2002		2004	2006	2008	2009	2010	2011	2012	2013	2014
Eu28 Intra	20.509.041	22.	.464.283	19.129.303	18.959.047	20.326.987	19.958.607	19.868.25	9 20.777.17	8 23.303.64	10 20.463.8
EPPO non-EU	2.297.391	2.	.233.297	2.357.737	2.113.932	1.655.611	1.503.477	1.403.202	2 1.218.38	3 911.28	35 1.016.7
non-EPPO	5.313.496	5.	.833.835	6.643.319	8.318.564	6.880.496	8.030.447	6.655.13	6.938.69	6 7.953.67	78 7.311.9
Total	28 119 928	30	531 415	28 130 359	29 391 543	28 863 094	29 492 531	27 926 59	8 28 934 25	7 32 168 60	3 28 792 5
										. 0200.00	2011 0210
Table 2 Importe	to the EU-	27 A	f fresh o	r dried oran) countries				
	2002	21 0	2004	2006		2000	2010	2011	2012	2012	2014
North Amorica	2002	1	2004	2000	67249	2009	60244	50206	2012	10072	2014
Conodo	103	70	23330	. 22004	0/240		. 05244		40040	19913	40147
Movioo	71	56	. 0	. 12 706	. 20.120	. 11 120	. 50.620	. 51 250		17 000	45 027
United States	0.50	50 S0	22 5/1	8 278	37 118	17 763	0.615	7 9/9	41 100	2 151	43 337
South America	1 280 20	0.0	1 972 205	2 0 7 8 0 4 0	2 154 517	1 700 709	2 020 605	1 205 727	4 000	1 2/6 212	1 224 159
Argenting	616.4	24	707 800	823.658	065 36/	822.086	8/3 030	800 577	479 707	106 354	147 365
Prozil	251 79	24	F0/ 186	470 370	260 071	160.820	330 030	268 780	479707	212 478	186 806
Chilo	23170	01	40 272	4/9 3/0	200 97 1	86.005	68 004	200709	57 206	212 470	15 560
Colombia	1 10	91)7	40 21 2	101 040	11 044	11 292	15 729	47 137	6 212	7 212	12 102
Equador	110	10	10 400	19 337	. 11 944	11 302	. 10720	4 000	0213	1 312	13 402
Doru	2	0	005	100	. 102.615	13	. 61.010	. 09.024	. 72 520	105 652	96 715
Surinamo	·	U	000 200	4 000 QE	123015	20775	01919	30 924 20	12 239	100 003	
	. 200.00	26	ZZÖ	C10 750	E70 500	E03 537	710.040	E77 044	260 404	U	
Venerusia	399 3	10	510014	049/58	5/8 500	593 53/	110916	577311	300 124	JUZ 434	404 131
Control America	4 04	+9 De	003	70 740	. 44 700	. 42.007	. 00.070		. 00 470	20,400	27200
Central America	59 6	30	74 702	70743	11 /80	13 697	28 212	20 8/6	22 1/6	28 489	2/289
DellZe	5/ 8/	20	14 341	00 142	J 283	0/31	. 11469	9211	<u> </u>	2 /95	5
Costa Rica	16	50	299	/4	:		:		:	:	84
El Salvador	:		:	:	240	:	:	:	:		
Guatemala	:		50	0	:	:	:	:	:	05 00 4	07.000
Honduras	:	20		2 527	6 111	4 966	16 1/4	11 443	18 864	25 694	27 200
Panama	22	26		:	2 152	:	629	222	:	40000	04500
Caribbean	1912:	00	182639	62/25	36257	59148	/4204	81064	49033	40996	31529
Antigua & Barbud		33		:	3 508	:	:	:	:		
Cayman Islands	22	20 :	:	:	:	:	:	:	:	0.054	4 407
Cuba	157 69	92	1/15/6	49 933	1/ 121	14 338	13 / 38	13 /54	8 924	8 251	4 497
Dominica	15	51	4/6	739	1 039	2 241	1 480	638	433	229	233
Dominican Rep.	6 08	88	2 491	7 991	83/3	16 209	7 070	14 511	13 038	4 937	/ 5/5
Haiti	:		:	113	:	:	:	/36	:	158	
Jamaica	25 2	78	8 096	3 949	6 216	26 360	51 976	51 425	26 638	27 421	19 224
St Lucia		12	:	:	:	:	:	:	:		
St Vincent &		~~									
Grenadines		32		:	:	:	:	:	:		
Africa	53387	56	5280206	6000982	//01130	612/45/	69/9328	5868879	6697871	/195053	6/92280
Algeria*		15	:	22	:	415	4	:	454	616	3 113
Congo	:		11	:	:	:	:	:	:		
Congo, Dem. Rep	D. 28	31	:	:	:	39	:	:	:		
Cote D'ivoire		9	:	:	:	:	:	:	:		
Egypt	298.27	18	/48 552	1 1/0 945	1 137 513	1 377 536	1 304 113	1 035 278	1 423 952	1 789 331	1 819 604
Ghana		73	:	202	12 319	20 640	6 720	3 120	2 649	705	3 006
Guinea-Bissau	:		:	43	1:	:	:	:	:	158	:
Kenya										97	69
Mali	:		0	:	:	:	:	:	:		
Madagascar		37	:	:	:	:	42	:	240	:	:
Mauritania	:		8	:	:	:	:	:	:		
Mauritius	:		: <u> </u>	30	153	:	:	24	21	:	:
Morocco*	1 361 2	54	1 429 450	1 416 311	1 415 968	909 401	948 150	981 183	823 945	486 858	668 491
Mozambique	:		1 302	:	:	456	3 192	5 710	6 262	474	:
Nigeria	:		:	:	1	:	3	:	:		
South Africa	2 987 8	15	2 615 936	2 955 691	4 560 886	3 353 095	4 159 330	3 404 933	3 960 149	4 339 321	3 802 096
Sudan	:		:	:	:	232	132	:	:		
Swaziland	145 3	50	136 446	136 534	148 832	129 825	95 731	118 791	120 047	98 012	24 935
Tanzania		6	:	:	:	:	:	:	:	:	28
Togo	:		:	:	:	:	0	:	:		
Tunisia*	218 5	72	185 520	188 672	257 817	199 450	223 373	203 103	167 586	194 774	151 759

Table 1. Imports to the EU27 by broad origins (100 kg). 'fresh or dried oranges'

	2002	2004	2006	2008	2009	2010	2011	2012	2013	2014
Zambia	0	173	:	223	12	:	118	:		
Zimbabwe	327 126	162 808	132 532	167 418	136 356	238 538	116 619	192 566	284 707	319 179
Asia	969	2593	2524	356	4300	366	996	1134	387	680
Azerbaijan*	346	:	:	:	:	:	:	:	2	:
China	17	40	10	33	3 292	11	3	34	242	18
Georgia	:	:	:	•••	16	•	•	:		
India	3	:	:	:	405	3	2	:		5
Indonesia	115	:	:	•••	•••	•	•	:		
Iran, Isl. Rep.	47	21	30	39	156	97	168	197	110	151
Japan	:	:	:	•••	4	15	•	:		
Macao	:	66	:		•••	•	:	:		
Pakistan	176	2 454	2 482	72	210	240	772	765	:	501
Philippines	:	:	:	:	:	:	:	2	22	2
Taiwan	:	:	:	:	5	:	:	:		
Tajikistan	:	:	:	•••	•••	•	•	:		
Thailand	6	12	2	212	210	•	50	135	11	3
Turkmenistan	39	:	:	:	:	:	:	:		
Vietnam	220	:	:	:	2	:	1	1	:	:
Near East	711531	608137	755210	442022	545529	329868	217726	226032	227361	192699
Israel*	311 728	247 538	192 708	201 404	228 582	176 532	110 532	115 636	64 072	59 032
Jordan*	:	9	:	:	:	:	:	:		
Lebanon	0	6	219	243	96	14	190	2	1	10
Saudi Arabia	218	462	286	:	49	11	:	250	:	:
Syrian Arab Rep.	757	225	326	3 497	5	330	:	:		
Turkey*	398 605	357 422	559 159	236 767	316 431	152 644	106 064	109 182	163 178	133 005
Oceania	11 333	11 127	10 406	17 298	16 410	10 450	2 425	5 534	4 874	3 182
Australia	10 461	11 127	10 406	17 298	16 410	10 450	2 425	5 534	4 874	3 182
New Zealand	872	:	:	:	:	:	:	:		
Europe (non-EU)	6871	13358	865	1976	1332	2774	2320	1580	1785	1374
Albania*	:	:	:	0	0	12	:	:		
Belarus*	:	935	:	:	:	188	:	116	136	215
Bosnia & Herzeg.*	:	:	:	:	:	:	205	:	16	:
FYR Macedonia*	191	917	:	769	:	1 200	317	:	766	325
Norway*	966	211	522	404	857	903	1 242	864	:	97
Russian Fed.*	:	99	:	120	71	173	236	:	:	406
Serbia*	:	:	206	382	208	:	:	576	765	17
Switzerland*	385	313	137	301	196	298	320	24	102	254
Ukraine*	5 329	10 883	:	:	:	:	:	:	:	60

ANNEX 2. Mandarins: Detailed data on trade (Source: Eurostat)

0 represent quantities below 100 kg.

Table 1. Imports to the EU27 by broad origins (100 kg). 'fresh or dried mandarins (incl. tangerines and satsumas, clementines, wilkings and similar citrus hybrids)'.

	2002	2004	2006	2008	2009	2010	2011	2012	2013	2014
Eu28_Intra	13.563.270	14.900.147	16.318.703	15.463.509	15.525.845	15.747.692	16.311.223	17.146.273	16.200.683	16.541.938
EPPO nonEU	2.104.453	1.924.499	1.899.026	1.717.593	1.865.896	2.006.728	1.685.608	1.440.367	1.584.435	1.939.882
non-EPPO	1.209.553	1.474.796	1.733.969	1.862.443	1.826.253	1.876.489	1.681.128	1.731.490	1.692.882	1.761.293
Total	16.877.276	18.299.442	19.951.698	19.043.545	19.217.994	19.630.909	19.677.959	20.318.130	19.478.000	20.243.113

Table 2 Imports to the EU-27 of 'fresh or dried mandarins (incl. tangerines and satsumas, clementines, wilkings and similar citrus hybrids)' * EPPO countries

	2002	2004	2006	2008	2009	2010	2011	2012	2013	2014
North America	1195	4538	7319	23419	7604	19966	48134	36999	47910	50965
Canada	:	:	:	:	:	244	•	:		
Mexico	1	:	:	:	187	:	:	:		
USA	1 194	4 538	7 319	23 419	7 417	19 722	48 134	36 999	47 910	50 965
South America	686 079	870 109	1 104 332	1 036 546	1 070 232	1 117 806	999 120	936 167	766 069	792 500
Argentina	293 893	333 023	388 377	362 525	470 272	397 705	321 608	240 248	158 743	119 980
Brazil	25 520	25 903	20 588	4 414	3 783	2 392	1 024	3 098	1 120	:
Chile	74 260	109 264	75 275	48 864	22 485	13 523	15 603	13 144	10 124	14 812
Colombia	0	:	578	436	:	:	:	:	1	97
Ecuador	65	28	:	:	:	:	:	:		
Paraguay	878	:	:	:	:	:	:	:		
Peru	87 626	166 111	257 278	309 835	234 141	332 228	419 253	485 360	441 388	487 334
Suriname	:	149	12	:	0	24	9	3	1	1
Uruguay	203 837	235 631	362 224	310 472	339 551	371 934	241 623	194 314	154 692	170 276
Central America	74	0	2144	0	0	457	0	74	1208	108
Belize	0	:	2 144	:	:	:	:	:		
Costa Rica	18	:	:	:	:	457	:	74	:	108
Honduras	56	:	:	:	:	:	:	:	553	:
Panama									655	:
Caribbean	6795	6085	3954	2956	5416	1403	2689	1803	414	4128
Antigua & Barbuda	:	:	:	179	:	:	:	:		
Dominica	:	:	:	:	:	7	:	:		
Dominican Rep.	24	:	259	294	105	174	14	146	56	30
Grenada	16	:	:	:	:	:	:	:		
Jamaica	6 755	6 085	3 695	2 483	5 311	1 222	2 675	1 433	358	4 098
Montserrat	:	:	:	:	:	:	:	224	:	:
Africa	1389088	1626550	1431185	1538663	1549202	1713898	1458123	1384493	1561430	1868534
Cote d'Ivoire	:	:	:	:	:	:	:	211	:	:
Egypt	5 560	20 620	24 364	18 526	14 492	22 228	11 654	12 231	3 423	16 079
Ghana	:	:	:	:	1	:	:	:		
Madagascar	15	:	:	:	:	:	:			400
Mauritania	:	0	:	:	:	:		:	:	400
Mauritania	19	30	:	:	:	:	:	:		
Marrian *	. 000.045	1 052 000		000 171	. 070 550	1 000 001	10	004 404	. 740 750	
Noribio	890 045	1 003 000	000 000	. 000 17 1	8/0 000	1036031		. 004 101	/42/38	995 Z I /
Nampia South Africo	170 057	. 522.056		. 702 001	. 652.610		. 577.010	. 700 200	900 /76	952.060
South Amea	4/020/	. 555 950	. 555 027	. 103 091	. 052 019	050 040	577919		009 470	000 000
Suuan	. 6.096	. 0 662	. 1 202	. 0.212	. 5.510	4 002	2 015	. 7 500	E 760	120
Swazilaliu Tunicio*	. 0.000	0 003	4 392	703	15	4 995	13	. 7.555	12	420
Llaanda		. 0	. 201	. 125	. 10	•	. 15		13	
Zambia	. 221				. 7	•				
Zimbabwa	. 8.846	. 0.580	. 621	. 1.040			•			3 358
	13277	12887	/1610	53521	. 16112	. 5/370	. 36244	. 31300	. 30550	33562
China	//0	733	3 0/17	3 256	2 157	1/3/	1 652	1 //72	3 30/	3 108
Georgia	· ·			. 0 200	133			306		190
India	•	. 15	. 203	. 803		•			•	11
Janan	. 100		. 200		•	2∩	52	12/	२१	25
Korea Ren		•	•	. 25	•	381	1 366	<u>124</u> <u>1</u> 257	13 701	13 385
Macao	•		·	20	•	001	1000	7 201	10701	10 000
	•	10	•	•	•	•				
Pakistan	: 12 905	10 12 129	: 38.360	: 49.437	: 43 852	: 52 535	33 163	: 25 231	22 423	16 744
Pakistan	: 12 905 1	10 12 129	: 38 360	: 49 437	: 43 852	: 52 535 ·	: 33 163 10	: 25 231	22 423	16 744

	2002	2004	2006	2008	2009	2010	2011	2012	2013	2014
Turkmenistan	231	:	:	:	:	:	:	:		
Vietnam	:	:	0	0	0	:	:	:		
Near East	1210976	867371	1029297	911001	986259	966178	811126	766415	839112	937621
Iran, Isl. Rep.	30	77	1	•	:	9	:	:		
Israel*	146 377	173 810	205 191	240 327	242 483	348 891	297 246	413 616	415 525	420 601
Jordan*	:	92	10	:	:	:	20	:		
Lebanon	:	:	1 462	3 387	408	:	35	:	2	0
Oman	:	:	:	•••	227	:	:	:		
Saudi Arabia	8	:	:	208	211	:	:	:		
Syrian Arab Rep.	453	480	313	555	20	70	:	:		
Turkey*	1 064 108	692 720	822 320	666 524	742 910	617 208	513 825	352 799	423 585	517 020
UAE	:	192	:	:	:	:	:	:		
Oceania	2 599	7 564	8 400	10 082	23 364	4 541	2 307	4 665	19 070	6 713
Australia	2 236	7 564	7 100	9 264	22 143	4 519	2 200	4 629	19 033	6 652
New Zealand	363	:	1 300	818	1 221	22	107	36	37	61
Europe (non-EU)	3923	4191	4754	3848	3930	4598	8757	9851	2397	6663
Andorra	:	:	30	:	:	:	:	:		
Belarus*	:	497	:	586	975	1 325	566	474	762	3 059
Bosnia & Herzeg.*	:	:	:	:	:	:	:	760	:	:
FYR Macedonia*	12	484	:	59	:	223	:	16	58	83
Iceland	:	6	:	:	:	:	:	:		
Moldova*									195	:
Montenegro*									205	323
Norway*	353	2 194	2 285	525	986	978	3 174	966	:	378
Russian Fed.*	:	148	198	:	604	569	3 464	2 889	37	47
Serbia*	:	:	:	203	768	143	949	4 541	627	1 204
Switzerland*	1 047	727	2 241	2 295	597	1 360	604	205	292	1 271
Ukraine*	2 511	135	:	180	:	:	:	:	221	298

ANNEX 3. Pests proposed in answer to the EPPO questionnaire on pests of concern for *Citrus* (2016-04)

Pest Latin name (family)	Why should it be considered / Why is it important?	Source indicated	Outcome in the study
Aleurocanthus citricola (A. spiniferus) (Hemiptera: Aleyrodidae)	Reported in Italy and Montenegro (both in restricted distribution). Important pest because of the trade of citrus fruits from Italy.	Department of agriculture, Cyprus	Excluded at Step 1 (regulated in the EU)
Aleurocanthus woglumi (Hemiptera: Aleyrodidae)	Wide host range, not regulated on <i>Citrus</i> fruits, high probability of entry and establishment, high reduction of fruit set	Plant Health Laboratory LSV, ANSES, France	Excluded at Step 1 (regulated in the EU)
<i>Amblypelta cocophaga</i> (Hemiptera, Coreidae)	Polyphagous external feeder in fruits and leaves; the eggs are USUALLY not laid in the fruits. Quarantine pest in the CPPC and OIRSA regions [rated 9/9 proposals of pests associated with fruit]	Spanish NPPO	Step 2 (considered)
<i>Amyelois transitella</i> (Lepidoptera: Pyralidae)	Polyphagous. Minor risk for citrus crops. [rated 6/6 proposals]	Institute for Plant Protection, CCAFRA, Croatia	Step 2 & Alert List
Anastrepha ludens/striata/fraterculus/serpe ntina (Diptera: Tephritidae)	Damages on fruits	CIRAD	Excluded at Step 1 (regulated in the EU)
Aonidiella orientalis (Hemiptera: Diaspididae)	Associated to fruit, widely distributed throughout the world but not in the EPPO region, polyphagous (<i>Acacia, Vitis, Guajava, Magnolia,</i> <i>Mangifera, Morus, Olea, Phoenix, Carica,</i> <i>Ligustrum</i>), it depreciates the fruit and reduces the plant vigour and harvest. In the Caribbean it is regarded as an economic plant pest of quarantine importance. [rated 7/9 proposals of pests associated with fruit]	Spanish NPPO	Step 2 (considered)
<i>Bactrocera dorsalis</i> (Diptera: Tephritidae)	Many host plants (highly polyphagous) rapid reproduction. Not in EU	Department of agriculture, Cyprus	Excluded at Step 1 (regulated in the EU)
	produced in Mediterranean countries	Navarro (Universitat Politècnica de València, Spain)	
<i>Bactrocera invadens</i> (Diptera: Tephritidae)	Many host plants (highly polyphagous) rapid reproduction. Not in EU	Department of agriculture, Cyprus	Excluded at Step 1 (regulated in the EU)
	Fruit fly that will attack many fruits produced in Mediterranean countries	Vicente Navarro (Universitat Politècnica de València, Spain)	
Bactrocera invadens/dorsalis/zonata/tryoni (Diptera: Tephritidae)	Damages on fruits	CIRAD	Excluded at Step 1 (regulated in the EU)
<i>Bactrocera minax</i> (Diptera: Tephritidae)	Not mentioned explicitly among the Tephritidae in EU directive Annex I/A1, low risk of entry, few efficient management measures available	Plant Health Laboratory LSV, ANSES, France	Excluded at Step 1 (regulated in the EU)
<i>Bactrocera zonata</i> (Diptera: Tephritidae)	Many host plants (highly polyphagous) rapid reproduction, reported in Israel. Not in EU	Department of agriculture, Cyprus	Excluded at Step 1 (regulated in the EU)
	Fruit fly present in north Africa that will attack mainly prunnus sp.	Vicente Navarro (Universitat	

Pest Latin name (family)	Why should it be considered / Why is it important?	Source indicated	Outcome in the study
		Politècnica de València, Spain)	
<i>Brevipalpus chilensis</i> (Acarida: Tenuipalpidae)	It is a polyphagous pest of hosts like <i>Citrus</i> , <i>Vitis</i> , <i>Actinidia deliciosa</i> , <i>Annona cherimola</i> , <i>Ficus</i> <i>benghalensis</i> , <i>and Ligustrum sinense</i> . It is a quarantine pest in USA which implies important trade restrictions and fruit rejections (Methyl Bromide required). It is considered a specially important mite for vineyards, affecting leaves and spreading to the grape bunches. As far as it is known is only present in Chile. [rated 4/9 proposals of pests associated with fruit]	Spanish NPPO	Step 2 & Alert List
Candidatus Liberibacter spp.	Huanglongbing disease, tree and fruit losses, insect vectors [rated 1 / 2 proposals]	University of Girona, Spain	africanus, americanus, asiaticus: excluded at Step 1 (regulated in the EU) <i>Candidatus</i> Liberibacter spp. considered at Step 2
<i>Ceratitis rosa/cosyra</i> (Diptera: Tephritidae)	Damages on fruits	CIRAD	Excluded at Step 1 (regulated in the EU)
Ceroplastes (=Gascardia) destructor (Hemiptera: Coccidae)	Highly polyphagous of important hosts although it does not attack the fruits directly, the excreted honeydew leads to the growth of molds. Many countries list it as a Quarantine pest, including Argentina, Brasil, Israel and South Africa [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (excluded, not associated with fruit)
Citripestis sagittiferella (Lepidoptera: Pyralidae)	UK 1-page assessment (2013)	UK Plant Health Service	Step 2 & Alert List
	Important pest of citrus. [rated 2/6 proposals]	Institute for Plant Protection, CCAFRA, Croatia	
Citrue longogia vigua	A difficult to control fruit-borne internal feeder. There was one confirmed interception (UK) in 2011, when adults were reared from <i>Citrus</i> <i>aurantifolia</i> fruit (lime) from Malaysia. (https://secure.fera.defra.gov.uk/phiw/riskRegister /plant- health/documents/citripestisSagittiferella.pdf). This pest may, however, be of concern to Citrus- growing southern EU states, as the potential impacts could be higher in these regions. Trade is supposed to be similar to the above mentioned case [rated 3/9 proposals of pests associated with fruit]	Spanish NPPO	Evaluad at Stap 1
Citrus leprosis virus (Rhabdoviridae, virus)	Not regulated on <i>Citrus</i> fruits; CiLV-C, CiLV-C2 and CiLV-N are different at the molecular level but cause similar symptoms on <i>Citrus</i> . Since these viruses are not systemic, the probability of introduction <i>via</i> imported fruits relies on the presence of vectors of the <i>Brevipalpus</i> genus in the import consignment or in the PRA zone (which is the case for <i>Brevipalpus californicus</i> , <i>Brevipalpus obovatus</i> and <i>Brevipalpus phoenicis</i>). The risk is thus considered as low	Plant Health Laboratory LSV, ANSES, France	Excluded at Step 1 (regulated in the EU)
<i>Coccus perlatus</i> (Hemiptera: Coccidae)	Pest monophagous of <i>Citrus</i> and not fruit-borne. Its entry should be difficult, for its pathway (leaves) is forbidden, and its symptoms (folded leaves) are conspicuous [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (as Parthenolecanium perlatum) (excluded, not associated with fruit)

Pest Latin name (family)	Why should it be considered / Why is it important?	Source indicated	Outcome in the study
Colletotrichum cliviae	This fungal species causes anthracnose diseases on Amaryllidaceae (e.g. <i>Clivia miniata</i>), Orchids (<i>Arundina graminifolia</i> , <i>Cymbidium hookerianum</i>) (Yang et al. 2009, 2011), <i>Cattleya</i> , <i>Calamus thwaitesii</i> , <i>Phaseolus</i> and <i>Saccharum</i> (Sharma et al. 2013) and Mango (Vieira et al, 2014). Isolated <i>C. cliviae</i> on citrus leaves and pathogenecity test indicated it is able to cause anthracnose on citrus fruits (publication in preparation).	Clovis Douanla-Meli, Julius Kühn Institute, Germany	Step 2 (excluded not associated with fruit)
<i>Diaphorina citri</i> (Hemiptera: Psyllidae)	Transmit greening (HLB), a severe disease Huanglongbing vector	CIRAD Vicente Navarro (Universitat Politècnica de València, Spain)	Excluded at Step 1 (regulated in the EU)
Diploschema rotundicolle (Coleoptera: Cerambycidae)	Although not fruit-borne and, to current knowledge, virtually monophagous (<i>Citrus</i> and <i>Melia</i>), as a borer it could be introduced in ornamental plants or in hosts yet unknown. Quoted as potentially dangerous for <i>Citrus</i> (Josep Anton Jaques, Aurelio Gómez, Plagas potenciales para la citricultura española: Diploschema rotundicolle y Ceratitis rosa, LEVANTE AGRICOLA, 369, pp: 70-71, 2004) [mentioned as not associated with fruit]	Spanish NPPO	Not added to the lists (Cerambycidae)
Ecdytolopha aurantianum (Lepidoptera: Tortricidae)	Very difficult to control on account of its condition of internal feeder and being borne in the fruits. Polyghagous feeder of <i>Citrus, Annona, Psidium</i> and others, and a potential risk for <i>Musa</i> . Spain has intercepted it in three occasions, in oranges from Brazil in spite of it is not a regulated pest. Trade from Brazil and other South America countries is very important [rated 1/9 proposals of pests associated with fruit]	Spanish NPPO	Step 2 & Alert List
Elsinoe australis and Elsinoe fawcettii (Elsinoaceae, fungi)	Regulated only on <i>Citrus reticulata</i> and <i>Citrus sinensis</i> fruits coming from South America, low risk of introduction <i>via Citrus</i> fruits which present quick early symptoms	Plant Health Laboratory LSV, ANSES, France	Excluded at Step 1 (regulated in the EU)
Eotetranychus sexmaculatus (Acarida: Tetranychidae)	It is not associated to the fruit but it is very polyphagous over important hosts such as <i>Citrus,</i> <i>Vitis, Avocado, Diospyros, Lycopersicum</i> In addition, it is a quarantine pest in Israel. [mentioned as not associated with fruit]	Spanish NPPO	Step 2 & Alert List
Eudocima phalonia (=Othreis fullonia) (Lepidoptera: Noctuidae)	Quarantine pest in Argentina, Brazil, Uruguay and South Africa. The adults are polyphagous of economically important hosts and feed externally on the fruits (it sucks the juices), rendering them unedible. The larvae feed mainly on plants of the <i>Menispermaceae</i> family. [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (excluded, not associated with fruit)
Homalodisca vitripennis (Hemiptera: Cicadellidae)	No direct impact on <i>Citrus</i> but vector of <i>Xylella</i> <i>fastidiosa</i> , high capacity of expanding its ovipositional and feeding host lists, primarily within ornamental plant species. It can become abundant in Mediterranean climates if plants receive adequate irrigation and winter temperature is not severe. High dissemination capacity especially as a hitchhiker Vector of a serious citrus disease called <i>Xylella</i>	Plant Health Laboratory LSV, ANSES, France Department of	Excluded at Step 1 (regulated in the EU as Cicadellidae vector of <i>X.</i> <i>fastidiosa</i>)
Indian citrus ringspot	tastidiosa. Reported in Netherland not present in Cyprus It affects Citrus. The virus is transmitted by	agriculture, Cyprus Spanish	Step 2 (excluded, not

Pest Latin name (family)	Why should it be considered / Why is it	Source	Outcome in the study
(Alphafloviviridae)	important?		accoriated with fruit)
(Alphanexivilidae)	bas no known vector. Affects productivity	NFFU	
	reducing size and number of fruits. Widespread in		
	India [mentioned as not associated with fruit]		
Marmara gulosa (Lenidontera:	Fruit home, but peelminer rather than internal	Snanish	Sten 2 & Alert List
Gracillariidae)	feeder. Highly polyphagous of <i>Citrus</i> and many	NPPO	otop 2 & Alert List
	economically important hosts including		
	grapevine and plum, and some ornamentals.		
	Quoted as potentially dangerous for Citrus (Josep		
	Anton Jaques, Aurelio Gómez, Plagas		
	potenciales para la citricultura española:		
	Scirtothrips aurantii y Marmara gulosa, LEVANTE		
	AGRICOLA, 371, pp: 250-251, 2004) [rated 5/9		
	proposals of pests associated with fruit]		
Milviscutulus mangiferae	UK PRA (2008). Highly polyphagous; Citrus spp.	UK Plant	Step 2 (excluded, not
(Hemiptera: Coccidae)	listed as hosts.	Health	associated with fruit)
		Service	
Mycosphaerella aurantia	Intercepted by LSV on Citrus fruits, not well	Plant Health	Step 2 (excluded, limited
(Ascomycota)	described regarding its phytosanitary impact		distribution in the EU)
		LSV, ANSES,	
Muaaanhaaralla aitri	Fungue internelly offects fruits and looved but	France	Stan 2 (avaludad nat
	Fungus, internally affects inuits and leaves, but		step 2 (excluded, not
(Asconycola)	Only affects Citrus and Putaceae Ouarantine	INFEO	
	pest in Israel and Jordan Imentioned as not		
	associated with fruit]		
Naupactus xanthographus	It is a very polyphagous pest over important	Spanish	Step 2 (excluded
(=Pantomorus xanthographus)	hosts. In addition, it is a guarantine pest in USA.	NPPO	contaminant)
(Coleoptera, Curculionidae)	Canada and Jordan with distribution in Argentina		
	and Chile which are citrus exporters to the EU.		
	The adult feeds on leaves and larvae on roots. In		
	Vitis, recently formed bunches can be also		
	damaged by this pest. It is associated to a wide		
	range of ornamental plants. [mentioned as not		
	associated with fruit]		
Non-European scale insects	Relatively many species, some of them	Institute for	Taken into account at Step
(Hemiptera: Coccoidea, e.g.	potentially damaging to citrus. [rated 4/6	Plant	2 for individual species
Ceroplastes sinensis)	proposaisj	Protection,	
		CCAFRA,	
Non European whiteflies	Polatively many energies, some of them	Croalia	Takan into appount at Stan
Hemintera: Alevrodidae e d	potentially damaging to citrus. Irated 3/6	Plant	2 for individual species
Orchamonlatus citri)	proposals]	Protection	
orenamoplatus entry	[highestia]	CCAFRA	
		Croatia	
Oidium tingitaninum	Only minor risk associated with possible	Institute for	Step 2 (considered)
(Ascomvcota)	introduction with citrus fruits. [rated 5/6 proposals]	Plant	
(, ,	· · · · · · · · · · · · · · · · · · ·	Protection,	
		CCAFRA,	
		Croatia	
Orchamoplatus mammaeferus	Currently, Orchamoplatus mammaeferus has a	UK Plant	Step 2 (considered)
(Hemiptera: Aleyrodidae)	tropical and sub-tropical distribution and is not	Health	
	likely to establish in the UK. O. mammaeferus is	Service	
	on the US quarantine pest list and <i>Citrus</i> growing		
	regions of the southern EU may be concerned		
	about this pest. The PRA was initiated after 25+		
	vacated pupae were intercepted on <i>Codiaeum</i>		
	cuttings from Costa Kica. Extract from UK PRA		
	Could be supplied on request		
Praelongorthezia praelonga	Highly polyphagous, very frequently intercented	Snanish	Sten 2 & Alart List
(Orthezia praelonga)	in the USA on different hosts including many	NPPO	olep 2 & Alert List
(Hemiptera: Ortheziidae)	ornamental species. Argentina reports that it also		
	ioporto triat it dioo	1	

Pest Latin name (family)	Why should it be considered / Why is it important?	Source indicated	Outcome in the study
	affects fruits. [rated 8/9 proposals of pests associated with fruit]		
<i>Pachnaeus litus</i> (Coleoptera: Curculionidae)	Not fruit-borne (the adult feeds on leaves and the larva on roots), highly polyphagous . India has established requirements for mangoes from Cuba. Maybe a pest to consider in other plants for planting species [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (considered)
Paracoccus burnerae (Hemiptera: Pseudococcidae)	Intercepted by LSV on <i>Citrus</i> fruits	Plant Health Laboratory LSV, ANSES, France	Step 2 & Alert List
<i>Paraleyrodes citri</i> (Hemiptera: Aleyrodidae)	Another white fly, not fruit-borne (it feeds on the leaves, produces waxy excretions that complicate treatment) [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (considered)
Passalora loranthi (Mycosphaerellaceae)	Intercepted by LSV on <i>Citrus</i> fruits, not well described regarding its phytosanitary impact, wide host range	Plant Health Laboratory LSV, ANSES, France	Step 2 (considered)
Phyllocnistis citrella (Lepidoptera: Gracillariidae)	Severe pest on young trees	CIRAD	Excluded at Step 1 (present in the EU)
Phyllosticta citriasiana (Phyllostictaceae)	Intercepted by LSV only on <i>Citrus maxima</i> fruits, similar symptoms to those of <i>Phyllosticta</i> <i>citricarpa</i> , can develop post-harvest, during transport and storage	Plant Health Laboratory LSV, ANSES, France	Step 2 (considered)
<i>Prays endocarpa</i> (Lepidoptera: Yponomeutidae)	<i>Prays endocarpa</i> is a minor pest of citrus in SE Asia. Larvae feed exclusively on the rind of citrus fruit. If this pest were to be introduced into the EC, Citrus growing regions of southern member states would be at most risk.	UK Plant Health Service	Step 2 & Alert List
	As a fruit-borne internal feeder, it is difficult to control. Pest of <i>Citrus</i> and <i>Aegle marmelos</i> , which is not regulated for this pest in fruits. EFSA acknowledges there exists risk. It is a quarantine pest in USA and Jordan. Nonetheless, it prefers high humidity, so there is no complete certainty as to the risk it poses in Europe. The trade of citrus and other susceptible hosts from the countries in Asia where it is supposed to be established is probably very low and in any case lower than the one from South America [rated 2/9 proposals of pests associated with fruit]	Spanish NPPO	
Pseudococcus cryptus (Hemiptera: Pseudococcidae)	Intercepted by LSV on <i>Citrus</i> fruits	Plant Health Laboratory LSV, ANSES, France	Step 2 (excluded, limited distribution in the EU)
Selenaspidus articulatus (Hemiptera: Diaspididae)	Associated to fruit where damage is caused by sap-depletion, and through injection of toxic saliva, discolouring the area of penetration. A polyphagous pest, of hosts of importance to UE including <i>Olea, Vitis, Ficus</i> and ornamentals. Widely distributed through central America and sub-Saharan Africa and quarantine in South Africa, this pest has been intercepted three times in Spain over Citrus sinensis from Peru and once in UK over Arecas from the Netherlands. Quoted as potentially dangerous for Citrus (Josep Anton Jaques, Aurelio Gómez, Selenaspidus articulatus (Morgan), Homoptera: Diaspididae, LEVANTE AGRICOLA, 362, pp: 306-307, 2002) [rated 6/9 proposals of pests associated with fruit]	Spanish NPPO	Step 2 (considered)
Singhiella (=Dialeurodes)	Not fruit-borne in Citrus, but its other hosts are	Spanish	Step 2 (excluded, not

Pest Latin name (family)	Why should it be considered / Why is it important?	Source indicated	Outcome in the study
<i>citrifolii</i> (Hemiptera: Aleyrodidae)	the ornamental <i>Gardenia</i> sp. and <i>Ficus nitida</i> , it is easily detected in inspection, though. Honeydew secretion causes sooty mold. It has been intercepted by the UK In Florida <i>Dialeurodes citri</i> is taking its place [mentioned as not associated with fruit]	NPPO	associated with fruit)
<i>Thaumatotibia leucotreta</i> (Lepidoptera: Tortricidae)	Main host plants are citrus and capsicum. Present in Africa and Israel where large number of commodities are imported in Cyprus. Not in EU.	Department of agriculture, Cyprus	Step 2 & Alert List
	Extremely polyphagous. Important pest of citrus. [rated 1/6 proposals]	Institute for Plant Protection, CCAFRA, Croatia	
	Frequently intercepted by LSV on <i>Citrus</i> fruits, yield losses up to 20% on <i>Citrus</i> , larvae are capable of developing in hard green fruit before control measures can be started.	Plant Health Laboratory LSV, ANSES, France	
<i>Toxoptera citricidus</i> (Hemiptera: Aphididae)	Transmit tristeza virus	CIRAD	Excluded at Step 1 (regulated in the EU)
<i>Trioza erythreae</i> (Hemiptera: Psyllidae)	Transmit greening	CIRAD	Excluded at Step 1 (regulated in the EU)
Xylella fastidiosa sbsps.	Pierce disease, tree and fruit losses, insect vectors [rated 1 / 2 proposals]	University of Girona, Spain	Excluded at Step 1 (regulated in the EU)
Zonocerus elegans (Orthoptera: Pyrgomorphidae)	A polyphagous locust that also feeds on fruit. South-Saharian distribution, lays its eggs in the ground. Long hatching period leads to months of continuous damage to crops [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (considered)
Zonocerus variegatus (Orthoptera: Pyrgomorphidae)	A polyphagous locust that also feeds on fruit. South-Saharian distribution, lays its eggs in the ground [mentioned as not associated with fruit]	Spanish NPPO	Step 2 (considered)

ANNEX 4. Categories of pests retained on the Alert List

A detailed description of categories and ratings can be found in the *Methods*.

Ratings retained on the Alert List (all pests are absent from the EU, i.e. B1a)

Subratings are covered in the ratings below (e.g. E1 covers E1u, E1h, E1d) except if explicitely excluded.

Place on Alert List	Combination of ratings covered in each	Description. All pests below may be associated with
	part	fruit (A1 or A2) (applies to each description)
Part 1 - Pests with high economic importance and more likely to transfer	 A1t/A2t + E1 (but not E1u, E1h) + any other 	• pests able to transfer, with a high economic impact currently (not uncertain high impact or high impact in the past)
Part 2 - Pests with lesser economic importance and more	 A1/A2 or A1ut/A2ut + E1 + any other 	• pests less able to transfer (or with an uncertainty on transfer), with a high economic impact currently
likely to transfer, or with high economic importance but less likely to transfer	 A1t/A2t or A1ut/A2ut + E1u or E1h + any other 	• pests able to transfer (or with an uncertainty on transfer), with a high economic impact (but either with an uncertainty, or in the past), and not newly recorded on the crop
	• A1t/A2t + E2+ (F1 or G1)	• pests able to transfer, with a moderate economic impact currently, but intercepted, spreading/invasive (and not newly recorded on the crop).
	 A1t + E2 (but not E2d)+ any other 	• non-mobile life stage associated with the fruit, pest able to transfer, with a moderate recorded impact currently
	• A1t/A2t + E3v or EUv + (F1 or G1)	• pests able to transfer, known vector, with a low or unknown recorded impact currently, and intercepted, spreading/invasive (and not newly recorded on the crop)
	• A1t/A2t + EU+ (F1 or G1)	• pests able to transfer, with an unknown recorded impact currently, but intercepted, spreading/invasive (and not newly recorded on the crop)

Not retained on the Alert List

- Ac (contaminant)
- NO categories
- Combinations of ratings not fulfilling any of the combinations above

ANNEX 5. List of pests remaining for consideration for the Alert List at Step 2 This list includes all pests retained for consideration, i.e. except 'contaminant' and all NO categories. Alert List pests are in bold

Type of pests: A = arachnida; I = insecta, F = fungi, V = viruses and viroids

Species	Туре	Taxonomy
Acaudaleyrodes rachipora	1	Hemiptera: Aleyrodidae
Acutaspis albopicta	1	Hemiptera: Diaspididae
Adoxophyes cyrtosema	1	Lepidoptera: Tortricidae
Adoxophyes honmai	1	Lepidoptera: Tortricidae
Adoxophyes templana	1	Lepidoptera: Tortricidae
Africaleurodes citri	1	Hemiptera: Aleyrodidae
Aithaloderma citri	F	Ascomycota
Albonectria rigidiuscula	F	Ascomycota
Alcides trifidus	1	Coleoptera: Curculionidae
Aleurocanthus citriperdus	1	Hemiptera: Aleyrodidae
Aleurocanthus cocois	1	Hemiptera: Aleyrodidae
Aleurocanthus delottoi		Hemiptera: Aleyrodidae
Aleurocanthus hansfordi	1	Hemiptera: Aleyrodidae
Aleurocanthus husaini	1	Hemiptera: Aleyrodidae
Aleurocanthus inceratus	1	Hemiptera: Aleyrodidae
Aleurocanthus mackenzie	1	Hemiptera: Aleyrodidae
Aleurocanthus mvoutiensis		Hemiptera: Aleyrodidae
Aleurocanthus spinosus	1	Hemiptera: Aleyrodidae
Aleurocanthus valenciae	1	Hemiptera: Aleyrodidae
Aleuroclava citri	1	Hemiptera: Aleyrodidae
Aleuroclava citrifoli		Hemiptera: Aleyrodidae
Aleuroclava psidii	1	Hemiptera: Aleyrodidae
Aleurodicus coccolobae		Hemiptera: Aleyrodidae
Aleurodicus dispersus	1	Hemiptera: Aleyrodidae
Aleurodicus dugesii	1	Hemiptera: Aleyrodidae
Aleurodicus floccissimus	1	Hemiptera: Aleyrodidae
Aleurodicus magnificus	1	Hemiptera: Aleyrodidae
Aleurolobus contusus	1	Hemiptera: Aleyrodidae
Aleurolobus moundi	1	Hemiptera: Aleyrodidae
Aleurolobus selangorensis	1	Hemiptera: Aleyrodidae
Aleurolobus seligerus	1	Hemiptera: Aleyrodidae
Aleurolobus subrotonous	1	Hemiptera: Aleyrodidae
Aleuroiobus szechwanensis	1	Hemiptera: Aleyrodidae
Aleuronudus acapuicensis	1	Hemiptera: Aleyrodidae
Aleuronudus jaciae	1	Hemintera: Alevrodidae
Aleuronudus manni	1	Hemiptera: Alevrodidae
Aleuroplatus translucidus	1	Hemiptera: Alevrodidae
Aleurothrixus aepim	1	Hemiptera: Alevrodidae
Aleurothrixus porteri	i	Hemiptera: Alevrodidae
Alternaria gossypina	F	Ascomvcota
Alternaria interna	F	Ascomycota
Alternaria undulata	F	Ascomycota
Amata germana	1	Lepidoptera: Arctiidae
Amblypelta cocophaga	1	Hemiptera: Coreidae
Amorbia cuneana	1	Lepidoptera: Tortricidae
Amyelois transitella	1	Lepidoptera: Pyralidae
Anacanthocoris striicornis		Hemiptera: Coreidae
Anatrachyntis rileyi		Lepidoptera: Cosmopterigidae
Antias lucidus		Hemiptera: Miridae
Aonidiella comperei		Hemiptera: Diaspididae
Aonidiella inornata		Hemiptera: Diaspididae
Aonidiella orientalis		Hemiptera: Diaspididae
Apion collare		Coleoptera: Apionidae
Archips argyrospilus	1	Lepidoptera: Tortricidae
Archips asiaticus		Lepidoptera: Tortricidae
Archips breviplicanus		Lepidoptera: Tortricidae
Archips micaceana	1	Lepidoptera: Tortricidae
Archips tabescens		Lepidoptera: Tortricidae
Argyrotaenia sphaleropa		Lepidoptera: Tortricidae
Arvelius acutispinus		Hemiptera: Pentatomidae
Asura strigipennis		Lepidoptera: Arctiidae
Athaumastus haematicus	11	Hemiptera: Coreidae

Species	Туре	Taxonomy
Atichia lopesii	F	Ascomycota
Aulacaspis citri	1	Hemiptera: Diaspididae
Aulacaspis crawii	1	Hemiptera: Diaspididae
Bathycoelia thalassina	1	Hemiptera: Pentatomidae
Bemisia giffardi	1	Hemiptera: Aleyrodidae
Biprorulus bibax	Ι	Hemiptera: Pentatomidae
Blakeslea trispora	F	Zygomycota
Bonagota cranaodes	1	Lepidoptera: Tortricidae
Brevipalpus chilensis	Α	Acarida: Tenuipalpidae
Brevipalpus junicus	А	Acarida: Tenuipalpidae
Calacarus citrifolii	А	Acarida: Eriophyidae
Calonectria citri	F	Ascomycota
Cania bilinea		Lepidoptera: Limacodidae
Capnodium brasiliense	F	
Capnodium tanakae	F	Ascomycota
Cappaea taprobanensis	1	Hemiptera: Pentatomidae
Carbula humerigera	1	Hemiptera: Pentatomidae
Caura pugillator	1	Hemiptera: Pentatomidae
Cephaleuros virescens	Algae	Trentepohliaceae
Ceramothyrium aurantii	F	
Ceramothyrium citricola	F	
Cercospora gigantea	F	Ascomycota
Cerococcus muratae	1	Hemiptera: Cerococcidae
Ceroplastes centroroseus	1	Hemiptera: Coccidae
Ceroplastes	1	Hemiptera: Coccidae
pseudoceriferus		
Ceroplastes rubens	1	Hemiptera: Coccidae
Cetonia speculifera	1	Coleoptera: Scarabaeidae
Chaetanaphothrips	1	Thysanoptera: Thripidae
signipennis		
Chaetoscorias vulgaris	F	Ascomycota
Chaetothyrium echinulatum	F	Ascomycota
Chaetothyrium petchii	F	Ascomycota
Chaetothyrium setosum	F	Ascomycota
Chaetothyrium spinigerum	F	Ascomycota
Chinavia hilaris	1	Hemiptera: Pentatomidae
Chloropulvinaria aurantii	1	Hemiptera: Coccidae
Chloropulvinaria polygonata	1	Hemiptera: Coccidae
Chrysocoris grandis	1	Hemiptera: Scutelleridae
Citripestis sagittiferella	I	Lepidoptera: Pyralidae
Citrus necrotic spot virus	V	Dichornavirus (proposed)
(proposed)	N/	
virue	v	Alphanexivindae: mandarivirus
Cletomorpha unifecciata	1	Hemintera: Coreidae
		Hemintera: Coreidae
Cherus ingonus	1	Lonidontora: Tortrigidag
Coccus viridie		Hemintera: Coccidae
Collodera penicillata	1	Coleontera: Scarabaeidae
Colgar persoutum		Hemintera: Flatidae
Colgaroides acuminata		Hemintera: Flatidae
Colletotrichum boninense	F	Ascomycota
Colletotrichum citri	F	Ascomycota
Colletotrichum citricola	F	Ascomycota
Colletotrichum constrictum	F	Ascomycota
Colletotrichum limetticola	F	Ascomycota
Colletotrichum novae-	F	Ascomycota
zelandiae		
Colletotrichum siamense	F	Ascomycota
Coptosoma nubila	1	Hemiptera: Plataspidae
Coridius chinensis	1	Hemiptera: Dinidoridae
Coridius fuscus	1	Hemiptera: Dinidoridae
Coscinoptycha improbana	1	Lepidoptera: Carposinidae

Species	Type	Taxonomy
Cryptoblabes adoceta		Lepidoptera: Pyralidae
Cryptoblabes hemigypsa		Lepidoptera: Pyralidae
Cryptothelea variegata	1	Lepidoptera: Psychidae
Ctenopseustis herana		Lepidoptera: Tortricidae
Ctenopseustis obliquana	1	Lepidoptera: Tortricidae
Dalpada oculata	Ι	Hemiptera: Pentatomidae
Dalpada smaragdina		Hemiptera: Pentatomidae
Danothrips trifasciatus	1	Thysanoptera: Thripidae
Dasynus antennatus	1	Hemiptera: Coreidae
Deudorix isocrates	1	Lepidoptera: Lycaenidae
Dialeurodes citricola	1	Hemiptera: Aleyrodidae
Dialeurolobus erythrinae	1	Hemiptera: Aleyrodidae
Dialeurolonga communis	1	Hemiptera: Aleyrodidae
Dialeurolonga elongata	1	Hemiptera: Aleyrodidae
Dialeuroloriya simplex		
Diaporthe biguttulata	F	Ascomycota
Diaporthe citriasiana	F	Ascomycota
Diaporthe discoidispora	F	Ascomycota
Diaporthe multioutullata	F	Ascomycota
Diaporthe ovalispora	F	Ascomycota
Diaporthe subclavata	F	Ascomycota
Diaporthe unshiuensis	F	Ascomycota
Diaprepes abbreviatus	1	Coleoptera: Curculionidae
Dichocrocis punctiferalis	1	Lepidoptera: Crambidae
Distantasca smithi	1	Hemiptera: Cicadellidae
Distantiella theobroma	1	Hemiptera: Miridae
Drepanococcus chiton		Hemiptera: Coccidae
Drosicha corpulenta	1	Hemiptera: Monophlebidae
Drosicha mangiferae		Hemiptera: Monophlebidae
Dysdercus cingulatus	-	Hemiptera: Pyrrhocoridae
Dysdercus maurus		Hemiptera: Pyrrhocoridae
Dysdercus melanoderes	Ι	Hemiptera: Pyrrhocoridae
Dysdercus nigrofasciatus		Hemiptera: Pyrrhocoridae
Dysdercus peruvianus	1	Hemiptera: Pyrrhocoridae
Dysdercus suturellus	1	Hemiptera: Pyrrhocoridae
Dysmicoccus nesophilus	1	Hemiptera: Pseudococcidae
Ecdytolopha aurantianum	1	Lepidoptera: I ortricidae
Gymnosandra	I	Lepidoptera: I ortricidae
Edossa moditabunda		Homintora: Pontatomidao
Edessa nictiventris	1	Hemiptera: Pentatomidae
Edessa pictiventitis	1	Hemiptera: Pentatomidae
Edessa quadridens	-	Hemiptera: Pentatomidae
Foira curialis	1	Lepidoptera: Noctuidae
Empoasca distinguenda	1	Hemiptera: Cicadellidae
Eotetranychus asiaticus	A	Acarida: Tetranychidae
Eotetranychus cendanai	Α	Acarida: Tetranychidae
Eotetranychus kankitus	Α	Acarida: Tetranychidae
Eotetranychus	Α	Acarida: Tetranychidae
sexmaculatus		-
Eutetranychus africanus	А	Acarida: Tetranychidae
Epuraea fallax	Ι	Coleoptera: Nitidulidae
Ericeia inangulata		Lepidoptera: Noctuidae
Erthesina fullo	1	Hemiptera: Pentatomidae
Eucorysses grandis	1	Hemiptera: Pentatomidae
Eumeta japonica	1	Lepidoptera: Psychidae
Eumeta minuscula	1	Lepidoptera: Psychidae
Euryaspis flavescens		Hemiptera: Pentatomidae
Euryophthalmus balteatus	1	
Exophinalmus scalaris	1	Hemintera: Dentatomidae
	1	Hemintera: Dsoudoooosidoo
Ferrisia virgete	1	Hemintera: Pseudococcidae
Fiorinia nrohoscidaria	1	Hemintera: Diasnididae
Formicoccus robustus		Hemintera: Pseudococcidae
Frankliniella australis		Thysanoptera: Thripidae
Frankliniella gemina		Thysanoptera: Thripidae
0		,

Species	Туре	Taxonomy
Frankliniella insularis	1	Thysanoptera: Thripidae
Fumiglobus citrinus	F	Ascomycota
Fusarium expansum	F	Ascomycota
Gatesclarkeana idia	1	Lepidoptera: Tortricidae
Geloptera porosa	1	Coleoptera: Chrysomelidae
Glaucias crassa	1	Hemiptera: Pentatomidae
Glaucias subpunctatus	1	Hemiptera: Pentatomidae
Gloeosporium citri	F	Ascomycota
Gymnetosoma mathani	1	Coleoptera: Scarabaeidae
Hendersonia citri	F	Ascomycota
Hendersonia socia	F	Ascomycota
Hibiscus green spot virus 2	V	Unassigned: Higrevirus
Homalogonia obtusa		Hemiptera: Pentatomidae
Homoeocerus pallens	1	Hemiptera: Coreidae
Homona magnanima	1	Lepidoptera: Tortricidae
Hygia opaca	1	Hemiptera: Coreidae
Hyphantus sulcifrons		Coleoptera: Curculionidae
Hypocapnodium japonicum	F	Ascomycota
Hypselonotus interruptus	1	Hemiptera: Coreidae
Icerya aegyptiaca	1	Hemiptera: Margarodidae
Inga lacunata	1	Lepidoptera: Oecophoridae
Insignorthezia pseudinsignis	1	Hemiptera: Ortheziidae
Ischnaspis longirostris	1	Hemiptera: Diaspididae
Isonychus albicinctus	1	Coleoptera: Scarabaeidae
Isotenes miserana	1	Lepidoptera: Tortricidae
Lachnopus hispidus	1	Coleoptera: Curculionidae
Lachnopus splendidus	1	Coleoptera: Curculionidae
Lachnopus vittatus	1	Coleoptera: Curculionidae
Lepidosaphes	1	Hemiptera: Diaspididae
		Henristener Orneider
	1	Hemiptera: Coreidae
Leptoglossus gonagra	1	Hemiptera: Coreidae
Leptoglossus gonagra (as	1	Hemiptera: Coreidae
L. australis of L.		
	1	Homintora: Coroidao
	1	Hemiptera: Coreidae
Limacinia aurantii	F	
Lohiona insularis	1	Coleoptera: Nitidulidae
Lorrvia turrialbensis	A	Acarida: Tydeidae
Loxa flavicornis	1	Hemiptera: Pentatomidae
Mahasena minuscula	1	Lepidoptera: Psychidae
Maleuterpes dentipes	1	Coleoptera: Curculionidae
Maleuterpes spinipes	1	Coleoptera: Curculionidae
Marmara gulosa	I	Lepidoptera: Gracillariidae
Massilieurodes fici	1	Hemiptera: Aleyrodidae
Megymenum gracilicorne	1	Hemiptera: Dinidoridae
Melacoryphus circumlitus	1	Hemiptera: Lygaeidae
Meliola butleri	F	Ascomycota
Meliola citricola	F	Ascomycota
Metaleurodicus minimus	1	Hemiptera: Aleyrodidae
Metonymia glandulosa	1	Hemiptera: Pentatomidae
Mimela flavilabris		Coleoptera: Scarabaeidae
Mimela splendens		Coleoptera: Scarabaeidae
Mimela testaceipes	1	Coleoptera: Scarabaeidae
Monolepta australis		Coleoptera: Chrysomelidae
Morfea alaskensis var.	F	
minor		
Morganella longispina		Hemiptera: Diaspididae
Musgraveia sulciventris		Hemiptera: Tessaratomidae
Mycetaspis personata		Hemiptera: Diaspididae
Mygdonia tuberculosa		Hemiptera: Coreidae
Myriangium floridanum	F	
Nagodopsis shirakiana		Lepidoptera: Limacodidae
Narosa nitobei		Lepidoptera: Limacodidae
Naupactus ambiguus		Coleoptera: Curculionidae
Naupactus rivulosus		Coleoptera: Curculionidae
Naupactus versatilis		Coleoptera: Curculionidae
Neocosmospora ipomoeae	F	Ascomycota

Species	Туре	Taxonomy
Neosilba batesi		Diptera: Lonchaeidae
Neosilba glaberrima		Diptera: Lonchaeidae
Neosilba inesperata	1	Diptera: Lonchaeidae
Neosilba pendula	1	Diptera: Lonchaeidae
Neosilba zadolicha		Diptera: Lonchaeidae
Nezara antennata	1	Hemiptera: Pentatomidae
Nipaecoccus viridis	1	Hemiptera: Pseudococcidae
Nothopatella lecanidium	F	Ascomycota
Nyctemera adversata		Lepidoptera: Arctiidae
	F	Ascomycota
Orketicus platensis	1	Lepidoptera: Psychidae
Oncopellus stall		Humonoptora: Eucharitidao
Orchamonlatus caledonicus	1	Hemintera: Alevrodidae
Orchamoplatus	1	Hemintera: Alevrodidae
mammaeferus		nemptera. Alcyrodiade
Orchamoplatus noumeae	1	Hemiptera: Alevrodidae
Ostrinia furnacalis	1	Lepidoptera: Pyralidae
Ourapteryx nivea	1	Lepidoptera: Geometridae
Pachnaeus azurescens	1	Coleoptera: Curculionidae
Pachnaeus litus		Coleoptera: Curculionidae
Pachnaeus scalaris		Coleoptera: Curculionidae
Palomena angulosa		Hemiptera: Pentatomidae
Panonychus elongatus	А	Acarida: Tetranychidae
Paracoccus burnerae	1	Hemiptera: Pseudococcidae
Paracoccus ferrisi		Hemiptera: Pseudococcidae
Paracoccus marginatus	1	Hemiptera: Pseudococcidae
Paracoccus tripurae	1	Hemiptera: Pseudococcidae
Paraleyrodes bondari	1	Hemiptera: Aleyrodidae
Paraleyrodes citri	1	Hemiptera: Aleyrodidae
Paraleyrodes citricolus	1	Hemiptera: Aleyrodidae
Paraleyrodes	1	Hemiptera: Aleyrodidae
Daralovrodos paraniao	1	Homintora: Alourodidao
Paralevrodes naralijae	1	Hemintera: Alevrodidae
Paralevrodes proximus	1	Hemiptera: Alevrodidae
Paralevrodes	1	Hemiptera: Alevrodidae
pseudonaraniae		
Paraleyrodes singularis	1	Hemiptera: Aleyrodidae
Paraleyrodes urichii	Ι	Hemiptera: Aleyrodidae
Parapantomorus fluctuosus	1	Coleoptera: Curculionidae
Parapronematus citri	А	Acarida: Tydeidae
Parlatoria citri		Hemiptera: Diaspididae
Parlatoria pittospori	Ι	Hemiptera: Diaspididae
Paropodia intermedia		Hemiptera: Kerridae
Passalora loranthi	F	Ascomycota
Penthimia nitida		Hemiptera: Cicadellidae
Pestalotiopsis adusta		Ascomycota
Phaeopeltis japonica		Ascomycota
Phaeosaccardinula javanica		ASCOMYCOLA
Philephedra broadwavi		Hemintera: Coccidao
Phyllosticta citriasiono	F	
Pinnasnis theae		Hemintera: Diasnididae
Pinnaspis uniloha	1	Hemintera: Diaspididae
Planococcus kenvae		Hemiptera: Pseudococcidae
Planococcus kraunhiae	i	Hemiptera: Pseudococcidae
Planococcus lilacinus	1	Hemiptera: Pseudococcidae
Planococcus minor	1	Hemiptera: Pseudococcidae
Planotortrix octo	1	Lepidoptera: Tortricidae
Platynota flavedana	1	Lepidoptera: Tortricidae
Platynota rostrana		Lepidoptera: Tortricidae
Plautia stali		Hemiptera: Pentatomidae
Podoxyphium citricola	F	Ascomycota
Porthesis scintillans		Lepidoptera: Lymantriidae
Praelongorthezia	1	Hemiptera: Ortheziidae
praelonga		Lenidenten M. (11
Prays endocarpa		Lepidoptera: Yponomeutidae
Pravs endolemma	11	Lepidoptera: Yponomeutidae

Species	Туре	Taxonomy
Proeulia auraria		Lepidoptera: Tortricidae
Proeulia chrysopteris		Lepidoptera: Tortricidae
Proeulia triquetra		Lepidoptera: I ortricidae
Protactia previtarsis		Coleoptera: Scarabaeidae
Fiolaella Ullenialis		Uneoptera: Diagoididag
Pseudaonidia trilobitiformia		Hemiptera: Diaspiuloae
Pseudococcus maritimus		Hemintera: Diaspiuluae
Pulvinaria citricola	1	Hemiptera: Coccidae
Pulvinaria psidii	· 	Hemiptera: Coccidae
Puto barberi		Hemiptera: Putoidae
Rastrococcus icervoides	1	Hemiptera: Pseudococcidae
Resseliella citrifrugis	1	Diptera: Cecidomyiidae
Rhomborrhina fulvopilosa	Ι	Coleoptera: Scarabaeidae
Rhynchocoris humeralis		Hemiptera: Pentatomidae
Rhynchocoris nigridens		Hemiptera: Pentatomidae
Riptortus clavatus		Hemiptera: Alydidae
Riptortus pedestris		Hemiptera: Alydidae
Scaphytopius acutus		Hemiptera: Cicadellidae
Scaphytopius		Hemiptera: Cicadellidae
		Homintora: Ciacdellide -
Schizototronuchus ki-li-	۱ ۸	Acarida: Totropushidae
Schizotetranychus Daltazari	A A	Acarida: Tetranychidae
hindustanique	~	nuanua. retranychiùae
Schizotetranychus spioulus	Α	Acarida: Tetranychidae
Scirtothrins alhomaculatus		Thysanoptera: Thrinidae
Scorias citrina	F	Ascomvcota
Scutellera perplexa		Hemiptera: Scutelleridae
Selenaspidus articulatus	1	Hemiptera: Diaspididae
Selenothrips rubrocinctus	I	Thysanoptera: Thripidae
Septosporium brasiliense	F	Ascomycota
Sericocoris acromelanthes	Ι	Hemiptera: Pyrrhocoridae
Solenopsis xyloni	1	Hymenoptera: Formicidae
Spilarctia subcarnea		Lepidoptera: Arctiidae
Stenocoris sordida		Hemiptera: Coreidae
Stomiopeltis citri	F	Ascomycota
Stomiopeltis minor		Ascomycota
Symplezomias citri		Coleoptera: Curculionidae
Symplezomias cribricollis		Coleoptera: Curculionidae
Tegolophus australia	Δ	Acarida: Erionbuidae
Tetraleurodes acaciao		Hemintera: Alevrodidae
Tetraleurodes cruzi		Hemiptera: Alevrodidae
Tetraleurodes mexicana		Hemiptera: Alevrodidae
Tetraleurodes mori		Hemiptera: Alevrodidae
Tetraleurodes ursorum	1	Hemiptera: Alevrodidae
Tetranychus desertorum	Α	Acarida: Tetranychidae
Tetranychus fijiensis	А	Acarida: Tetranychidae
Tetranychus	А	Acarida: Tetranychidae
neocaledonicus	ļ	
Thaumatotibia leucotreta		Lepidoptera: Tortricidae
Thrips flavidulus		Thysanoptera: Thripidae
I iracola plagiata		Lepidoptera: Noctuidae
I oxoptera odinae		Hemiptera: Aphididae
I rabala vishnou		Lepidoptera: Lasiocampidae
I retogonia notatifrons		Hemiptera: Cicadellidae
Trialeurodos ministria		Hemintera: Aleyrodidae
		Hemintera: Alevrodidaa
Trialeurodes valiabilis		Hemintera: Alevrodidae
Tripospermum pes-galinao	F	Ascomvcota
Tuckerella knorri	A	Acarida: Tuckerellidae
Tuckerella ornata	A	Acarida: Tuckerellidae
Tuckerella pavoniformis	A	Acarida: Tuckerellidae
Tydeus tuttlei	А	Acarida: Tydeidae
Udinia catori	1	Hemiptera: Coccidae
Udinia farquharsoni		Hemiptera: Coccidae
Ulodemis trigrapha		Lepidoptera: Tortricidae
		2 -
Species	Туре	Taxonomy
-----------------------	------	----------------------------
Vasdavidius setiferus	1	Hemiptera: Aleyrodidae
Vitellus orientalis	1	Hemiptera: Pentatomidae
Xenaleyrodes broughae	1	Hemiptera: Aleyrodidae
Zaprionus indianus	I	Diptera: Drosophilidae
Zonocerus elegans	1	Orthoptera, Pyrgomorphidae
Zonocerus variegatus	1	Orthoptera, Pyrgomorphidae

ANNEX 6. Organisms excluded from further consideration at Step 1 and Step 2

The table includes the following categories: contaminant, all NO categories (for those, one organism may fall under several NO categories, but only one was used to exclude it, and not all are indicated) (i.e. a pest may have been excluded because it is regulated in the EU or because it is widespread in the EU, but it may be that *Citrus* are not hosts, or that it is not associated with fruit). <u>Warning</u>: this is <u>not</u> a list of *Citrus* pests: the host status was not necessarily verified for pests in NO categories excluded for other reasons (e.g. present in the EU, associated to wood, regulated in the EU etc.). Type of pests: A = Arachnida, B = Bacteria (incl. phytoplasma), C = Chromista, F = Fungi, G = Gastropoda, I = Insecta, V = Viruses and viroids.

Name		Taxonomy	Reason	Name		Taxonomy	Reason
Anopolepis gracilipes	Ι	Hymenoptera: Formicidae	Contaminant	Agestrata orichalcea	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Caliothrips fasciatus	1	Thysanoptera: Thripidae	Contaminant	Agonoscelis nubilis	Ι	Hemiptera: Pentatomidae	NO2 (not associated with Citrus fruit)
Macchiademus diplopterus	1	Hemiptera: Lygaeidae	Contaminant	Agrilus auriventris	Ι	Coleoptera: Buprestidae	NO2 (not associated with Citrus fruit)
Microxeromagna lowei	G	Helicoidea: Hygromiidae	Contaminant	Agrotis ipsilon	Ι	Lepidoptera: Noctuidae	NO3 (present in the EU)
Microxeromagna vestita	G	Helicoidea: Hygromiidae	Contaminant	Agrotis tokionis	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Naupactus xanthographus		Coleoptera: Curculionidae	Contaminant	Aiolopus thalassinus	Ι	Orthoptera: Acrididae	NO3 (present in the EU)
Orthorhinus cylindrirostris		Coleoptera: Curculionidae	Contaminant	Aleurocanthus cheni	1	Hemiptera: Aleyrodidae	NO5 (other reason)
Paratrechina longicornis	1	Hymenoptera: Formicidae	Contaminant	Aleurocanthus punjabensis	1	Hemiptera: Aleyrodidae	NO5 (other reason)
Solenopsis geminata	1	Hymenoptera: Formicidae	Contaminant	Aleurocanthus spiniferus	Ι	Hemiptera: Aleyrodidae	NO1 (regulated in the EU)
Solenopsis invicta	1	Hymenoptera: Formicidae	Contaminant	Aleurocanthus woglumi	Ι	Hemiptera: Aleyrodidae	NO1 (regulated in the EU)
Abgrallaspis cyanophylli	1	Hemiptera: Diaspididae	NO3 (present in the EU)	Aleuroclava aucubae	Ι	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Abgrallaspis sp.	1	Hemiptera: Diaspididae	NO5 (other reason)	Aleuroclava jasmini	Ι	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Acanalonia conica	1	Hemiptera: Acanaloniidae	NO2 (not associated with Citrus fruit)	Aleurodicus sp cercana a A.	1	Hemiptera: Aleyrodidae	NO5 (other reason)
Acanthocoris dilatatus	1	Hemiptera: Coreidae	NO5 (other reason)	cocois			
Acanthoecia laminati	1	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)	Aleurolobus marlatti	Ι	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Aceria sheldoni	Α	Acarida: Eriophyidae	NO3 (present in the EU)	Aleurolobus niloticus	Ι	Hemiptera: Aleyrodidae	NO5 (other reason)
Achaea janata	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Aleuronudus sp.	1	Hemiptera: Aleyrodidae	NO5 (other reason)
Achaea serva	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Aleurothrixus floccosus	1	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Acharia stimulea	1	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)	Aleurotrachelus atratus	Ι	Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)
Achatina fulica	G	Sigmurethra: Achatinidae	NO2 (not associated with Citrus fruit)	Aleurotrachelus sp.	Ι	Hemiptera: Aleyrodidae	NO5 (other reason)
Achivodes thraso ssp. thraso	Ī	Lepidopteera: Hesperiidae	NO2 (not associated with Citrus fruit)	Aleurotrachelus trachoides	Ι	Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)
Acidovorax avenae subsp.	B	Burkholderiales :	NO4 (not associated with Citrus)	Aleyrodidae (non-European	1	Hemiptera: Aleyrodidae	NO5 (other reason)
avenae		Comamonadaceae		whiteflies; Hemiptera:			
Acidovorax citrulli	В	Burkholderiales:	NO3 (present in the EU)	Aleyrodidae, e.g. Orchamoplatus			
		Comamonadaceae	· · · · · · · · · · · · · · · · · · ·	Citri)	-	Assessments	NO2 (assessed in the EU)
Aclees cribratus	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)	Alternaria alternata		Ascomycota	NO3 (present in the EU)
Acrogonia flaveoloides	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)	Alternaria brassicae		Ascomycota	NO3 (present in the EU)
Acromyrex hispidus	1	Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)	Alternaria citri		Ascomycota	NO3 (present in the EU)
Acromyrmex lundi	1	Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)	Alternaria citriarbusti		Ascomycota	NO5 (other reason)
Acrogonia citrina	1	Hemiptera: Cicadellidae	NO1 (regulated in the EU)	Alternaria citrimacularis		Ascomycota	NO5 (other reason)
Acronicta major	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Alternaria citrimacularis sp. nov.		Ascomycota	NO2 (not associated with Citrus fruit)
Acrotheca caulium	F	Ascomycota	NO2 (not associated with Citrus fruit)	Alternaria dumosa		Ascomycota	NO5 (other reason)
Actinotia intermediata	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Alternaria limicala		Ascomycola	NO2 (pat appagiated with Citrus fruit)
Aculops pelekassi	Α	Acarida: Eriophyidae	NO3 (present in the EU)			Ascomycota	NO2 (not associated with Citrus fruit)
Acutaspis paulista	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)	Alternaria ilmoniasperae		Ascomycota	NO2 (not associated with Citrus fruit)
Acutaspis scutiformis	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)	Alternaria perangusta		Ascomycota	NO5 (other reason)
Adoretus formosanus	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Alternaria tenuissima		Ascomycota	NO3 (present in the EU)
Adoretus sinicus	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Alternaria toxicogenica		Ascomycota	NO5 (other reason)
Adoretus umbrosus	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Aneriaan num line nottern vizue	F V	Ascomycola Promoviridao: Hanvinua	NUD (other reason)
Adoretus versutus		Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	American pium line pattern virus	V	Diomoviridae: liarvirus	NOT (regulated in the EU)
Adoxophyes dubia		Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)	Amplicephalus dubius	+		NO4 (not associated with Citrus)
Adoxophyes orana fasciata	1	Lepidoptera: Tortricidae	NO5 (other reason)	Amplicephalus marginelianus	+	Hemiptera: Cicadellidae	NO4 (not associated with Citrus)
Adoxophyes privatana	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)	Anirasca biguttula	11	nemiptera: Cicadellidae	INUZ (not associated with Citrus fruit)

Name		Taxonomy	Reason	Name		Taxonomy
Amrasca flavescens	1	Hemiptera: Cicadellidae	NO5 (other reason)	Aphis nerii	1	Hemiptera: A
Amsacta lactinea	Ι	Lepidoptera: Arctiidae	NO2 (not associated with Citrus fruit)	Aphis spiraecola	1	Hemiptera: A
Anarsia lineatella		Lepidoptera: Gelechiidae	NO3 (present in the EU)	Aphrophora intermedia	1	Hemiptera: C
Anastrepha alveatoides	Ι	Diptera: Tephritidae	NO1 (regulated in the EU)	Aplonobia citri	Α	Acarida: Tetra
Anastrepha chiclayae		Diptera: Tephritidae	NO1 (regulated in the EU)	Apochima juglansiaria		Lepidoptera:
Anastrepha daciformis	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Apoderus nigroapicatus		Coleoptera: A
Anastrepha fraterculus	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Apogonia cribricollis		Coleoptera: S
Anastrepha grandis	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Apomyelois ceratoniae		Lepidoptera:
Anastrepha ludens	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Apple stem grooving virus	V	Betaflexivirida
Anastrepha obligua	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Araecerus fasciculatus		Coleoptera: A
Anastrepha punctata	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips atrolucens		Lepidoptera:
Anastrepha rosilloi	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips crataegana		Lepidoptera:
Anastrepha schultzi	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips fuscocupreanus	$-\frac{1}{1}$	
Anastrepha serpentina	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips incentana	$-\frac{1}{1}$	
Anastrepha striata	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips machlonis		Lepidoptera:
Anastrepha suspensa	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Archips machiopis		
Anatrachyntis badia		Lepidontera: Cosmonterigidae	NO3 (present in the FU)	Archine vylosteana	+	
Ancistrosoma klugi		Coleontera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Arcto coorula		Lepidoptera:
		Lenidontera: Tortricidae	NO3 (present in the EU)	Arquireteonia eitrene		Lepidoptera.
Andasnis hawaijansis	<u> </u>	Hemintera: Diasnididae	NO2 (pot associated with Citrus fruit)	Argyrolaenia citrana		Lepidopiera
Anomala (rachypyga		Colooptora: Soarabaaidaa	NO2 (not associated with citids indit)	Armiliaria luteopubalina		Basidiomycot
Anomala albonilosa	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Armiliaria mellea		Basidiomycot
Anomala comulanta		Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Armiliaria tabescens		Basidiomycot
		Coleoptera: Scarabasidas	NO2 (not associated with Citrus fruit)	Artena dotata		Lepidoptera:
Anomala cupica		Coleoptera: Scarabasidas	NO2 (not associated with Citrus fruit)	Artipus floridanus		Coleoptera: C
		Coleoptera: Scarabasidas	NO2 (not associated with Citrus fruit)	Aschersonia placenta		Ascomycota
Anomala expansa		Coleoptera: Scarabaeidae	NO2 (not associated with Citrus Inul)	Ascochyta citri		Ascomycota
Anomala rufeguarea		Coleoptera. Scarabaeidae	NOT (regulated in the EU)	Ascochyta corticola		Ascomycota
Anomala fulocupiea		Coleoptera. Scarabaeluae	NO2 (not associated with Citrus fruit)	Ascochyta pisi	F	Ascomycota
Anomis flava			NO2 (not associated with Citrus fruit)	Ascotis selenaria		Lepidoptera:
		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Asota tortuosa		Lepidoptera:
Anomis mesogona		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Aspavia armigera		Hemiptera: Po
Anomis sabulifera		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Aspergillus aculeatus	F	Ascomycota
Anopiocnemis curvipes	<u> </u>	Hemiptera: Coreidae	NO2 (not associated with Citrus fruit)	Aspergillus flavus	F	Ascomycota
Anoplocnemis melancholica	<u> </u>	Hemiptera: Coreidae	NO4 (not associated with Citrus)	Aspergillus melleus	F	Ascomycota
Anoplocnemis phasiana		Hemiptera: Coreidae	NO2 (not associated with Citrus fruit)	Aspergillus niger	F	Ascomycota
Anthina brunnea	F	Ascomycota	NO2 (not associated with Citrus fruit)	Aspidiotus destructor	1	Hemiptera: D
Anthina citri	F	Ascomycota	NO2 (not associated with Citrus fruit)	Aspidiotus nerii	Ι	Hemiptera: D
Anthonomus pomorum		Coleoptera: Curculionidae	NO3 (present in the EU)	Aspidomorpha difformis	Ι	Coleoptera: C
Anthrenus verbasci		Coleoptera: Dermestidae	NO3 (present in the EU)	Astylus quadrilineatus	1	Coloptera: Me
Anticarsia irrorata		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Asymmetrasca decedens	1	Hemiptera: C
Antonina crawii		Hemiptera: Pseudococcidae	NO3 (present in the EU)	Atactogaster orientalis	1	Coleoptera: C
Anzora unicolor	1	Hemiptera: Flatidae	NO2 (not associated with Citrus fruit)	Athelia rolfsii	F	Basidiomycot
Aonidiella aurantii	1	Hemiptera: Diaspididae	NO3 (present in the EU)	Athemus suturellus	1	Coleoptera: C
Aonidiella citrina		Hemiptera: Diaspididae	NO1 (regulated in the EU)	Atherigona orientalis	1	Diptera: Muso
Aonidiella eremocitri	Ι	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)	Athrypsiastis salva		Lepidoptera:
Apamea aquila	1	Lepidoptera: Noctuidae	NO3 (present in the EU)	Atta cephalotes		Hymenoptera
Apate monachus	1	Coleoptera: Bostrichidae	NO2 (not associated with Citrus fruit)	Atta insularis		Hymenoptera
Aphis craccivora	1	Hemiptera: Aphididae	NO3 (present in the EU)	Atta sexdens		Hymenoptera
Aphis fabae		Hemiptera: Aphididae	NO3 (present in the EU)	Attacus atlas	$-\frac{1}{1}$	Lepidoptera
Aphis gossypii	i	Hemiptera: Aphididae	NO3 (present in the FU)	Aulacaspis tubercularis	+	Hemiptera D
	1 '					i iomptota. D

ame		Taxonomy	Reason
phis nerii	Ι	Hemiptera: Aphididae	NO3 (present in the EU)
phis spiraecola	Ι	Hemiptera: Aphididae	NO3 (present in the EU)
phrophora intermedia	Ι	Hemiptera: Cercopidae	NO2 (not associated with Citrus fruit)
plonobia citri	Α	Acarida: Tetranychidae	NO5 (other reason)
pochima juglansiaria	Ι	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)
poderus nigroapicatus	Ι	Coleoptera: Attelabidae	NO2 (not associated with Citrus fruit)
pogonia cribricollis	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
pomyelois ceratoniae	Ι	Lepidoptera: Pyralidae	NO3 (present in the EU)
pple stem grooving virus	V	Betaflexiviridae: capillovirus	NO3 (present in the EU)
raecerus fasciculatus	Ι	Coleoptera: Anthribidae	NO3 (present in the EU)
rchips atrolucens	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rchips crataegana	Ι	Lepidoptera: Tortricidae	NO3 (present in the EU)
rchips fuscocupreanus	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rchips ingentana	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rchips machlopis	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rchips seminubilus	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rchips xylosteana	Ι	Lepidoptera: Tortricidae	NO3 (present in the EU)
rcte coerula	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
rgyrotaenia citrana	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
rmillaria luteobubalina	F	Basidiomycota	NO2 (not associated with Citrus fruit)
rmillaria mellea	F	Basidiomycota	NO3 (present in the EU)
rmillaria tabescens	F	Basidiomycota	NO2 (not associated with Citrus fruit)
rtena dotata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
rtipus floridanus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
schersonia placenta	F	Ascomycota	NO5 (other reason)
scochyta citri	F	Ascomycota	NO3 (present in the EU)
scochyta corticola	F	Ascomycota	NO2 (not associated with Citrus fruit)
scochyta pisi	F	Ascomycota	NO3 (present in the EU)
scotis selenaria	Ι	Lepidoptera: Geometridae	NO3 (present in the EU)
sota tortuosa	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
spavia armigera	Ι	Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
spergillus aculeatus	F	Ascomycota	NO5 (other reason)
spergillus flavus	F	Ascomycota	NO3 (present in the EU)
spergillus melleus	F	Ascomycota	NO5 (other reason)
spergillus niger	F	Ascomycota	NO3 (present in the EU)
spidiotus destructor	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
spidiotus nerii		Hemiptera: Diaspididae	NO3 (present in the EU)
spidomorpha difformis		Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
stylus quadrilineatus		Coloptera: Meloidae	NO2 (not associated with Citrus fruit)
symmetrasca decedens		Hemiptera: Cicadellidae	NO3 (present in the EU)
tactogaster orientalis		Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
thelia rolfsii		Basidiomycota	NO3 (present in the EU)
themus suturellus	1	Coleoptera: Cantharidae	NO2 (not associated with Citrus fruit)
therigona orientalis		Diptera: Muscidae	NO3 (present in the EU)
tnrypsiastis salva	<u> </u>	Lepidoptera: Oecophoridae	NO2 (not associated with Citrus fruit)
tta cepnalotes		Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)
tta insularis	<u> </u>	Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)
tta sexdens	<u> </u>	Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)
ttacus atlas			NO2 (not associated with Citrus fruit)
uiacaspis tubercularis		nemiptera: Diaspididae	NU3 (present in the EU)

Name		Taxonomy	Reason	Name		Taxonomy
Aulacophora femoralis		Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Bothrogonia ferruginea	1	Hemiptera: Cicadellidae
Aulacophora nigripennis		Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Botryosphaeria dothidea	F	Ascomycota
Aulacorthum magnoliae		Hemiptera: Aphididae	NO2 (not associated with Citrus fruit)	Botryosphaeria parva	F	Ascomycota
Aulacorthum solani		Hemiptera: Aphididae	NO3 (present in the EU)	Botryosphaeria guercuum	F	Ascomycota
Auricularia polytricha	F	Basidiomycota	NO2 (not associated with Citrus fruit)	Botryosphaeria rhodina	F	Ascomycota
Autographa californica		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Botryosphaeria ribis	F	Ascomycota
Bactrocera aquilonis		Diptera: Tephritidae	NO1 (regulated in the EU)	Botryotinia fuckeliana	F	Ascomycota
Bactrocera carambolae		Diptera: Tephritidae	NO1 (regulated in the EU)	Brachycaudus helichrysi		Hemiptera: Aphididae
Bactrocera caryeae		Diptera: Tephritidae	NO1 (regulated in the EU)	Brachycyttarus subteralbatus	1	Lepidoptera: Psychidae
Bactrocera correcta		Diptera: Tephritidae	NO1 (regulated in the EU)	Brachystylodes pilosus	1	Coleoptera: Curculionida
Bactrocera cucurbitae		Diptera: Tephritidae	NO1 (regulated in the EU)	Brentus anchorago		Coleoptera: Brentidae
Bactrocera curvipennis		Diptera: Tephritidae	NO1 (regulated in the EU)	Brevipalpus californicus	Α	Acarida: Tenuipalpidae
Bactrocera diversa	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Brevipalpus lewisi	Α	Acarida: Tenuipalpidae
Bactrocera dorsalis	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Brevipalpus obovatus	Α	Acarida: Tenuipalpidae
Bactrocera dorsalis species	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Brevipalpus phoenicis	Α	Acarida: Tenuipalpidae
complex		here all and a	(13-11-1-1)	Bruchophagus fellis		Hymenoptera: Eurytomid
Bactrocera facialis		Diptera: Tephritidae	NO1 (regulated in the EU)	Bryobia praetiosa	Α	Acarida: Tetranychidae
Bactrocera frauenfeldi	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Brvobia rubrioculus	Α	Acarida: Tetranychidae
Bactrocera invadens	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Bucephalogonia xanthophis	1	Hemiptera: Cicadellidae
Bactrocera jarvisi	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Burkholderia andropogonis	B	Burkholderiales:
Bactrocera kirki	1	Diptera: Tephritidae	NO1 (regulated in the EU)		_	Burkholderiaceae
Bactrocera minax	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Cacoecimorpha pronubana	1	Lepidoptera: Tortricidae
Bactrocera neohumeralis	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Cadra cautella	1	Lepidoptera: Pyralidae
Bactrocera occipitalis	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Calomycterus obcoinicus	1	Coleoptera: Curculionida
Bactrocera papayae	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Calonectria reteaudii	F	Ascomycota
Bactrocera passiflorae	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Calosphaeria fici	F	
Bactrocera pedestris	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Calvotra lata		Lepidoptera: Noctuidae
Bactrocera philippinensis	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Calvotra minuticornis		Lepidoptera: Noctuidae
Bactrocera scutellata	İ	Diptera: Tephritidae	NO1 (regulated in the EU)	Calvotra thalictri	1	Lepidoptera: Noctuidae
Bactrocera tau	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Canephora unicolor	1	Lepidoptera: Psychidae
Bactrocera tryoni	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Cania sinensis	1	Lepidoptera: Limacodida
Bactrocera tsuneonis	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Capnodium citri	F	Ascomycota
Bactrocera xanthodes	i	Diptera: Tephritidae	NO1 (regulated in the EU)	Capnodium salicinum	F	Ascomycota
Bactrocera zonata	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Capnophaeum fuliginodes	F	Ascomycota
Bahita spiniventris	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)	Carales astur		Lenidontera: Arctiidae
Barrionsis iraniana	F	Ascomycota	NO2 (not associated with Citrus fruit)	Cardiophorus vulgaris	i	Coleoptera: Flateridae
Basiprionota bisignata		Coleontera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Carpoglyphus lactis	A	Acarida: Carpoglyphidae
Bastilla analis	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Carpophilus davidsoni	$-\frac{\alpha}{1}$	Coleontera: Nitidulidae
Bastilla crameri		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Carpophilus beminterus	-ti-	Coleoptera: Nitidulidae
Bastilla fulvotaenia		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Carpophilus humeralis		Coleoptera: Nitidulidae
Bastilla ioviana		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Carpophilus mutilatus		Coleoptera: Nitidulidae
Bastilla maturata		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Carposina ninonensis		Lenidontera: Carnosinida
Bastilla praetermissa	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Cassida circumdata		Coleontera: Chrysomelid
Bastilla simillima	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Cassida evilis		Coleoptera: Chrysomelid
Battus polydamas		Lenidontera: Panilionidae	NO2 (not associated with Citrus fruit)	Cassida versicolor	+	Coleontera: Chrysomelid
Bomisia afor		Hemintera: Alevrodidae	NO3 (nresent in the FLI)	Catinula citri		
Remisia aveta		Hemintera: Alevrodidae	NO3 (present in the EU)		+	Dintera: Tenbritidao
Demisia Uvala	1		NO3 (present in the EU)		A	Acarida: Tepuinalaidae
Bernisia tabaci	-		NU3 (present in the EU)		A	Lenidontera: Tortrioidae
Bionectria ochroleuca		Ascomycota	NU2 (not associated with Citrus fruit)	Coratitie apopeo	-	Diptora: Tophritidaa
Biston panterinaria			NO2 (not associated with Citrus fruit)			Diptera: Tephiniuae
Biston suppressarius		Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)	Ceratitis capitata		Diptera: Tephritidae

	Taxonomy	Reason
Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
i	Hemiptera: Aphididae	NO3 (present in the EU)
i	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)
i	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
i	Coleoptera: Brentidae	NO2 (not associated with Citrus fruit)
Δ	Acarida: Tenuinalnidae	NO3 (present in the EU)
Δ	Acarida: Tenuipalpidae	NO3 (present in the EU)
Δ	Acarida: Tenuipalpidae	NO3 (present in the EU)
	Acarida: Tenuipalpidae	NO3 (present in the EU)
	Acalida. Telidipalpidae	NO3 (present in the LO)
	Acarida: Totranychidao	NO2 (not associated with citrus hult)
A	Acarida: Totropychidae	
A	Homintora: Ciandollidae	NO3 (present in the EU)
B	Durkholderiages:	NU3 (present in the EU)
-	Lopidoptora: Tertrisidae	NO2 (proport in the FU)
1		NOS (present in the EU)
		NU3 (present in the EU)
		NU2 (not associated with Citrus fruit)
	Ascomycota	NU2 (not associated with Citrus fruit)
	l en la este en Maratala	NO4 (not associated with Citrus)
	Lepidoptera: Noctuidae	NU2 (not associated with Citrus fruit)
	Lepidoptera: Noctuidae	NU2 (not associated with Citrus fruit)
1	Lepidoptera: Noctuidae	NO3 (present in the EU)
H	Lepidoptera: Psychidae	NO3 (present in the EU)
1-	Lepidoptera: Limacodidae	NO5 (other reason)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO3 (present in the EU)
F	Ascomycota	NO5 (other reason)
	Lepidoptera: Arctiidae	NO2 (not associated with Citrus fruit)
H.	Coleoptera: Elateridae	NO2 (not associated with Citrus fruit)
A	Acarida: Carpoglyphidae	NO5 (other reason)
	Coleoptera: Nitidulidae	NO2 (not associated with Citrus fruit)
	Coleoptera: Nitidulidae	NO3 (present in the EU)
	Coleoptera: Nitidulidae	NO3 (present in the EU)
	Coleoptera: Nitidulidae	NO3 (present in the EU)
Ι	Lepidoptera: Carposinidae	NO1 (regulated in the EU)
1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
F		NO2 (not associated with Citrus fruit)
Ι	Diptera: Tephritidae	NO1 (regulated in the EU)
А	Acarida: Tenuipalpidae	NO3 (present in the EU)
1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
1	Diptera: Tephritidae	NO1 (regulated in the EU)
1	Diptera: Tephritidae	NO3 (present in the EU)

Reason

Name		Taxonomy	Reason
Ceratitis cosyra	Ι	Diptera: Tephritidae	NO1 (regulated in the EU)
Ceratitis ditissima	Ι	Diptera: Tephritidae	NO1 (regulated in the EU)
Ceratitis penicillata	Ι	Diptera: Tephritidae	NO1 (regulated in the EU)
Ceratitis quinaria	1	Diptera: Tephritidae	NO1 (regulated in the EU)
Ceratitis rosa	Ι	Diptera: Tephritidae	NO1 (regulated in the EU)
Ceratobasidium anceps	F	Basidiomycota	NO3 (present in the EU)
Ceratobasidium noxium	F	Basidiomycota	NO5 (other reason)
Ceratocystis fimbriata	F	Ascomycota	NO3 (present in the EU)
Ceratocystis radicicola	F	Ascomycota	NO3 (present in the EU)
Ceratothripoides brunneus	Ι	Thysanoptera: Thripidae	NO5 (other reason)
Ceratovacuna lanigera	Ι	Hemiptera: Aphididae	NO2 (not associated with Citrus fruit)
Cercospora angolensis	Ι	Ascomycota	NO1 (regulated in the EU)
Cercospora penzigii	Ι	Ascomycota	NO3 (present in the EU)
Ceresa ustulata	Ι	Hemiptera: Membracidae	NO2 (not associated with Citrus fruit)
Ceroplastes ceriferus	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Ceroplastes cirripediformis	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes destructor	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Ceroplastes floridensis	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes grandis	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Ceroplastes japonicus	1	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes rusci	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes sinensis	1	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes stellifer	1	Hemiptera: Coccidae	NO3 (present in the EU)
Ceroplastes subrotunda	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Cetonia pilifera	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Chaetanaphothrips (undetermined	Ι	Thysanoptera: Thripidae	NO5 (other reason)
spp.)			, , , , , , , , , , , , , , , , , , ,
Chaetanaphothrips orchidii	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Chaetodiplodia citri	F	as incertae sedis	NO2 (not associated with Citrus fruit)
Chaetothyrium sawadae	F	Ascomycota	NO2 (not associated with Citrus fruit)
Chalciope mygdon	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Chalcocelis albiguttatus	Ι	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Chalioides kondonis	Ι	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)
Charaxes jasius	Ι	Lepidoptera: Nymphalidae	NO3 (present in the EU)
Chariaspilates formosaria	Ι	Lepidoptera: Geometridae	NO3 (present in the EU)
Chileulia stalactitis	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Chlorophanus grandis	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Chlorophanus lineolus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Chonocephalus depressus	Ι	Diptera: Phoridae	NO3 (present in the EU)
Choristoneura parallela	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Chromocreopsis cubispora	F		NO4 (not associated with Citrus)
Chrysodeixis eriosoma	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Chrysomphalus aonidum	Ì	Hemiptera: Diaspididae	NO3 (present in the EU)
Chrysomphalus bifasciculatus	Ì	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Chrysomphalus dictyospermi	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Chrysomphalus pinnulifer	Ì	Hemiptera: Diaspididae	NO3 (present in the EU)
Cicadella viridis	İ	Hemiptera: Cicadellidae	NO3 (present in the FU)
Cicadellidae	İ	Hemiptera: Cicadellidae	NO5 (other reason)
Circulifer tenellus	İ	Hemiptera: Cicadellidae	NO1 (regulated in the FU)
Citrus bark cracking viroid	V	Pospiviroidae: Cocadviroid	NO3 (present in the FU)
(previously known as Citrus viroid			······································

Name		Taxonomy	Reason
IV)			
Citrus bent leaf viroid	V	Pospiviroidae: Apscaviroid	NO3 (present in the EU)
Citrus blight agent	V	Unknown	NO1 (regulated in the EU)
Citrus cachexia viroid	V		NO2 (not associated with Citrus fruit)
Citrus chlorotic dwarf-associated	V		NO2 (not associated with Citrus fruit)
virus			
Citrus dwarfing viroid	V	Pospiviroidae: Apscaviroid	NO3 (present in the EU)
Citrus exocortis viroid	V	Pospiviroidae: Pospiviroid	NO3 (present in the EU)
Citrus impietratura agent	V	Unknown	NO3 (present in the EU)
Citrus leaf rugose ilarvirus	V	Bromoviridae: Ilavirus	NO2 (not associated with Citrus fruit)
Citrus leprosis virus	V	Rhabdoviridae: rhabdovirus (unassigned)	NO1 (regulated in the EU)
Citrus mosaic virus	۷	Secoviridae: sadwavirus	NO1 (regulated in the EU)
Citrus psorosis virus complex	V	Ophioviridae: ophiovirus	NO2 (not associated with Citrus fruit)
Citrus ringspot virus	V	Ophioviridae: ophiovirus	NO1 (regulated in the EU)
Citrus tatter leaf virus	V	Betaflexiviridae: capillovirus	NO1 (regulated in the EU)
Citrus tristeza virus	V	Closteroviridae: Closterovirus	NO1 (regulated in the EU)
Citrus variegation virus	V	Bromoviridae: ilarvirus	NO3 (present in the EU)
Citrus vein enation virus	V	Luteoviridae: enamovirus	NO3 (present in the EU)
Citrus viroid IV	V	Pospiviroidae: apscaviroid	NO3 (present in the EU)
Citrus viroid V	V	Pospiviroidae: apscaviroid	NO3 (present in the EU)
Citrus viroid VI	V	Pospiviroidae: apscaviroid	NO3 (present in the EU)
Citrus yellow mosaic virus	V	Caulimoviridae: badnavirus	NO1 (regulated in the EU)
Citrus yellow mosaic virus	V	Caulimoviridae: badnavirus	NO1 (regulated in the EU)
Cladosporium citri	F	Ascomycota	NO5 (other reason)
Cladosporium cladosporioides	F	Ascomycota	NO3 (present in the EU)
Cladosporium herbarum var.	F	Ascomycota	NO3 (present in the EU)
citricola			v. , , , , , , , , , , , , , , , , , , ,
Cladosporium oxysporum	F	Ascomycota	NO2 (not associated with Citrus fruit)
Cladosporium sclerotiophilum	F	Ascomycota	NO5 (other reason)
Clarkeulia bourquini	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Cleoporus variabilis	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Clitea metallica	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Clonostachys rosea	F	Ascomycota	NO5 (other reason)
Coccus caparidis	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Coccus hesperidum	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Coccus longulus	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Coccus pseudomagnoliarum	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Cochliobolus lunatus	F	Ascomycota	NO3 (present in the EU)
Colletotrichum acutatum	F	Ascomycota	NO3 (present in the EU)
Colletotrichum cliviae	F	Ascomycota	NO2 (not associated with Citrus fruit)
Colletotrichum coccodes	F	Ascomvcota	NO3 (present in the EU)
Colletotrichum cordvlinicola	F	Ascomycota	NO4 (not associated with Citrus)
Colletotrichum crassipes	F	Ascomycota	NO3 (present in the EU)
Colletotrichum foliicola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Colletotrichum fructicola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Colletotrichum karstii	F	Ascomycota	NO3 (present in the FU)
Colletotrichum musae	F	Ascomycota	NO4 (not associated with Citrus)
Colletotrichum truncatum	F	Ascomycota	NO3 (present in the FLI)
Compsus obliguatus	ti	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Compsus sp	ti	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
	· ·		

Name		Taxonomy	Reason	Name		Taxonomy	Reason
Compsus viridivittatus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)	Dialeurodes citri	1	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Coniothecium citri	F	Ascomycota	NO2 (not associated with Citrus fruit)	Dialeurodes kirkaldyi	1	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Coniothyrium fuscoatrum	F	Ascomycota	NO3 (present in the EU)	Dialeurodes struthanti	1	Hemiptera: Aleyrodidae	NO4 (not associated with Citrus)
Coniothyrium paulense	F	Ascomycota	NO2 (not associated with Citrus fruit)	Dialonectria episphaeria	F	Ascomycota	NO3 (present in the EU)
Contarinia citri	1	Diptera: Cecidomviidae	NO2 (not associated with Citrus fruit)	Diaphania pyloalis	1	Lepidoptera: Crambidae	NO2 (not associated with Citrus fruit)
Contarinia okadai	1	Diptera: Cecidomviidae	NO2 (not associated with Citrus fruit)	Diaphorina citri	1	Hemiptera: Liviidae	NO1 (regulated in the EU)
Contarinia okadai	1	Diptera: Cecidomviidae	NO2 (not associated with Citrus fruit)	Diaporthe arctii	F		NO4 (not associated with Citrus)
Coprinellus micaceus	F	Basidiomycota	NO5 (other reason)	Diaporthe citri	F	Ascomycota	NO3 (present in the EU)
Coptotermes formosanus	i	Isoptera: Rhinotermitidae	NO2 (not associated with Citrus fruit)	Diaporthe citrichinensis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Corgatha dictaria	i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Diaporthe citrincola	F	Ascomycota	NO5 (other reason)
Corigetus sieversi	i	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)	Diaporthe faginea	F	Ascomycota	NO3 (present in the FU)
Coriolopsis polyzona	F	Basidiomycota	NO2 (not associated with Citrus fruit)	Diaporthe foeniculina	F	Ascomycota	NO3 (present in the EU)
Coriolus fibula	F	Basidiomycota	NO2 (not associated with Citrus fruit)	Diaporthe medusae	F	Ascomycota	NO5 (other reason)
Corticium centrifugum	F	Basidiomycota	NO5 (other reason)	Diaprenes splenderi	li.	Coleontera: Curculionidae	NO2 (not associated with Citrus fruit)
Corticium koleroga	F	Basidiomycota	NO5 (other reason)	Diatrypella vulgaris	F	Ascomycota	NO2 (not associated with Citrus fruit)
Corvnespora citricola	F	Ascomycota	NO2 (not associated with Citrus fruit)	Dictyophara patruelis	l i	Hemintera: Dictyonharidae	NO2 (not associated with Citrus fruit)
	i	Lepidontera: Cossidae	NO3 (present in the EU)	Dictyophara sinica	i	Hemiptera: Dictyopharidae	NO2 (not associated with Citrus fruit)
Cranionhora fasciata		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Dictyophara sinica		Lenidontera: Saturniidae	NO2 (not associated with Citrus fruit)
Cratosomus pupetulatus	1	Colooptora: Chrysomolidae	NO2 (not associated with Citrus fruit)	Dictyopioca japonica	5		NO2 (not associated with Citrus fruit)
Cractonotos gongia		Lopidontoro: Arctiidoo	NO2 (not associated with Citrus)	Didymena aurantiipinia	H	Lanidantara: Nastuidaa	NO2 (not associated with Citrus fruit)
Creatonotos transians		Lepidoptera: Arctiidae	NO4 (not associated with Citrus)	Diehontorus contolimai		Lepidopiera. Nociuldae	NO2 (not associated with Citius Indi)
Creationolos transiens		Lepidopiera. Arcilidae	NO2 (not associated with Citrus fruit)	Dirobopterus costalimat			NO2 (not appopriated with Citrus fruit)
Crieula coliciiformia			NO2 (not associated with citius inuit)	Dimenum schemen		Ascomycola	
	F	Asconiycola	NO3 (present in the EU)	Dinuyinia nalipens	-	Hemintern: Derhidee	NO2 (not appaginted with Citrup fruit)
		Cigmurathra Haliaidaa	NO3 (present in the EU)	Diostrombus pointus			NO2 (not associated with Citrus fruit)
Cryptonipilaius aspersus	G		NO3 (present in the EO)	Diplodia citilia		Ascomycola	NO2 (not associated with Citrus fruit)
			NO4 (not associated with Citrus fruit)	Diplodia destruens		Ascomycola	NO2 (not associated with Citrus fruit)
	F	Ascomycota	NO2 (not associated with Citrus fruit)	Diplodia Indica		Ascomycota	NO2 (not associated with Citrus fruit)
	Г	Ascomycola	NO2 (not associated with Citrus Iruit)	Dipiodiella oospora	Г	Ascomycola	NO2 (not associated with Citrus Inut)
			NO2 (not associated with Citrus fruit)	Dirioxa pornia		Diptera: Tephnitidae	NOT (regulated in the EU)
	F	Ascomycota	NO2 (not associated with Citrus fruit)	Dolycons baccarum		Hemiptera: Pentatomidae	NO3 (present in the EU)
Cytospora citri		Ascomycota	NO2 (not associated with Citrus fruit)	Dotnidea tetraspora var. citricola	F	Ascomycota	NO3 (present in the EU)
Dactylispa angulosa	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Drosicna contranens	1	Hemiptera: Monophiebidae	NO2 (not associated with Citrus fruit)
Dactylispa excisa		Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Drosicha howardi	!	Hemiptera: Margarodidae	NO2 (not associated with Citrus fruit)
Dacus bivittatus	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Drosicha stebbingii		Hemiptera: Monophiebidae	NO5 (other reason)
Dacus ciliatus	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Drosophila hydei		Diptera: Drosophilidae	NO3 (present in the EU)
Dacus transitorius	1	Diptera: Tephritidae	NO1 (regulated in the EU)	Drosophila immigrans		Diptera: Drosophilidae	NO3 (present in the EU)
Dacus umeni		Diptera: Tephritidae	NO1 (regulated in the EU)	Drosophila repleta		Diptera: Drosophilidae	NO3 (present in the EU)
Daldinia concentrica	F	Ascomycota	NO2 (not associated with Citrus fruit)	Drosophila simulans		Diptera: Drosophilidae	NO3 (present in the EU)
Daldınıa eschscholzıı	F	Ascomycota	NO2 (not associated with Citrus fruit)	Duplaspidiotus claviger		Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Dappula tertia	1	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)	Dysgonia arctotaenia	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Darna ochracea	1	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)	Dysgonia arcuata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Darna trima		Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)	Dysgonia stuposa	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Dasineura citri	1	Diptera: Cecidomyiidae	NO2 (not associated with Citrus fruit)	Dysmicoccus brevipes	1	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Dasychira mendosa		Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)	Dysmicoccus neobrevipes	Ι	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Delottococcus aberiae		Hemiptera: Pseudococcidae	NO3 (present in the EU)	Echinocnemus bipunctatus	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Dendrolimus spectabilis	1	Lepidoptera: Lasiocampidae	NO2 (not associated with Citrus fruit)	Echinocnemus squameus	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Dexicrates robustus		Coleoptera: Bostrichidae	NO2 (not associated with Citrus fruit)	Ectinohoplia obducta	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Diabrotica marginata	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Ectropis crepuscularia	Ι	Lepidoptera: Geometridae	NO3 (present in the EU)
Diabrotica significata	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Ectropis excellens	Ι	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)
Diabrotica speciosa	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Elsinoe annonae	F		NO4 (not associated with Citrus)

Name		Taxonomy	Reason
Elsinoe australis	F	Ascomycota	NO1 (regulated in the EU)
Elsinoe fawcettii	F	Ascomycota	NO1 (regulated in the EU)
Elytroteinus subtruncatus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Empoasca arborescens	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Empoasca citrusa	Ι	Hemiptera: Cicadellidae	NO5 (other reason)
Empoasca decipiens	Ι	Hemiptera: Cicadellidae	NO3 (present in the EU)
Empoasca fabae	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Empoasca vitis	Ι	Hemiptera: Cicadellidae	NO3 (present in the EU)
Endoclita excrescens	Ι	Lepidoptera: Hepialidae	NO2 (not associated with Citrus fruit)
Endoxylina citricola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Enmonodia feniseca	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Entomogramma torsa	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eotetranychus lewisi	Α	Acarida: Tetranychidae	NO1 (regulated in the EU)
Epiacanthus stramineus	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Epilachna paenulata	Ι	Coleoptera: Coccinellidae	NO2 (not associated with Citrus fruit)
Epimactis talantias	Ι	Lepidoptera: Oecophoridae	NO2 (not associated with Citrus fruit)
Epiphyas postvittana	Ι	Lepidoptera: Tortricidae	NO3 (present in the EU)
Epuraea terminalis	1	Coleoptera: Nitidulidae	NO3 (present in the EU)
Ercheia cyllaria	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Erebus caprimulgus	Ì	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Frebus crepuscularis	Ì	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Frebus hieraglyphica	i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Frebus macrops	i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Erebus walkeri	i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Frwinia rhapontici	В	Enterobacteriales	NO3 (present in the FU)
	_	enterobacteriaceae	····· (p·······························
Erysiphe guercicola	F	Ascomycota	NO3 (present in the EU)
Erythricium salmonicolor	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Erythroneura sudra	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Eucalymnatus tessellatus	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Eudocima apta	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eudocima homaena	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eudocima materna	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eudocima phalonia	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eudocima salaminia	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eudocima tyrannus	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Eulecanium perinflatum	I	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Euproctis bipunctapex	Ι	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis flava	1	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis montis	Ι	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis piperita	Ι	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis pseudoconspersa	I	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis pulverea	Ι	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euproctis varians	Ι	Lepidoptera: Lymantriidae	NO2 (not associated with Citrus fruit)
Euricania facialis	I	Hemiptera: Ricaniidae	NO2 (not associated with Citrus fruit)
Euricania ocellus	Ι	Hemiptera: Ricaniidae	NO2 (not associated with Citrus fruit)
Euscelidius variegatus	Ι	Hemiptera: Cicadellidae	NO3 (present in the EU)
Eutetranychus anneckei	Α	Acarida: Tetranychidae	NO5 (other reason)
Eutetranychus banksi	А	Acarida: Tetranychidae	NO3 (present in the EU)
Eutetranychus orientalis	А	Acarida: Tetranychidae	NO1 (regulated in the EU)
Euthochtha galateor	I	Hemiptera: Coreidae	NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason
Eutinophaea bicristata	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Eutypa lata	F	Ascomycota	NO2 (not associated with Citrus fruit)
Eutypella citri	F	Ascomycota	NO2 (not associated with Citrus fruit)
Eutypella citricola	F	Ascomycota	NO3 (present in the EU)
Eutypella leprosa	F	Ascomycota	NO2 (not associated with Citrus fruit)
Euzopherodes vapidella	1	Lepidoptera: Pyralidae	NO3 (present in the EU)
Exaeretia culcitella	1	Lepidoptera: Depressariidae	NO3 (present in the EU)
Exosoma flaviventre	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Eysarcoris ventralis	Ι	Hemiptera: Pentatomidae	NO3 (present in the EU)
Ferrariana trivittata	1	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Fiorinia fioriniae	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Fiorinia theae	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Formica japonica	Ι	Hymenoptera: Formicidae	NO5 (other reason)
Frankliniella bispinosa	Ι	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Frankliniella distinguenda	1	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Frankliniella gardeniae	1	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Frankliniella intonsa	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Frankliniella occidentalis	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Fusarium concolor	F	Ascomycota	NO3 (present in the EU)
Fusarium limonis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Fusarium oxysporum	F	Ascomycota	NO3 (present in the EU)
Fusarium oxysporum f. sp. citri	F	Ascomycota	NO2 (not associated with Citrus fruit)
Fusarium oxysporum f. sp.	F	Ascomycota	NO3 (present in the EU)
vasinfectum			
Fusarium oxysporum var.	F	Ascomycota	NO3 (present in the EU)
aurantiacum		-	
Fusarium roseum	F	Ascomycota	NO5 (other reason)
Fusarium sambucinum	F	Ascomycota	NO3 (present in the EU)
Fusarium scirpi	F	Ascomycota	NO3 (present in the EU)
Fusarium solani	F	Ascomycota	NO3 (present in the EU)
Ganoderma applanatum	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Ganoderma lucidum	F	Basidiomycota	NO3 (present in the EU)
Ganoderma tropicum	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Gargara genistae	Ι	Hemiptera: Membracidae	NO3 (present in the EU)
Gascardia brevicauda	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Gatesclarkeana erotias	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Geisha distinctissima	Ι	Hemiptera: Flatidae	NO2 (not associated with Citrus fruit)
Geococcus citrinus	Ι	Hemiptera: Rhizoecidae	NO2 (not associated with Citrus fruit)
Geotrichum candidum	F	Ascomycota	NO3 (present in the EU)
Geotrichum candidum var citri- aurantii	F	Ascomycota	NO3 (present in the EU)
Gibberella avenacea	F	Ascomycota	NO3 (present in the EU)
Gibberella baccata	F	Ascomycota	NO3 (present in the EU)
Gibberella fujikuroi	F	Ascomycota	NO3 (present in the EU)
Gibberella fujikuroi var.	F	Ascomycota	NO3 (present in the EU)
subglutinans			
Gloeodes pomigena	F	Ascomycota	NO3 (present in the EU)
Gloeosporium citricola	F	Ascomycota	NO5 (other reason)
Glomerella cingulata	F	Ascomycota	NO3 (present in the EU)
Glycyphana fulvistemma		Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Gonodonta incurva		Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason
Grammodes geometrica	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Grammodes stolida	Ι	Lepidoptera: Noctuidae	NO3 (present in the EU)
Graphognathus leucoloma		Coleoptera: Curculionidae	NO1 (regulated in the EU)
Gynaikothrips ficorum	1	Thysanoptera: Phlaeothripidae	NO3 (present in the EU)
Gynaikothrips uzeli	Ι	Thysanoptera: Phlaeothripidae	NO4 (not associated with Citrus)
Haematonectria haematococca	F	Ascomycota	NO3 (present in the EU)
Halyomorpha annulicornis	Ι	Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
Halyomorpha halys	Ι	Hemiptera: Pentatomidae	NO3 (present in the EU)
Halyomorpha picus		Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
Halyomorpha reflexa	Ι	Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
Hapalopidus placodes	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Haplosomoides costata	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Haplothrips angustus	Ι	Thysanoptera: Thripidae	NO4 (not associated with Citrus)
Haplothrips chinensis	Ι	Thysanoptera: Phlaeothripidae	NO2 (not associated with Citrus fruit)
Haplothrips subtilissimus	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Haplothrips victoriensis	Ι	Thysanoptera: Thripidae	NO5 (other reason)
Hapsifera barbata	Ι	Lepidoptera: Tineidae	NO2 (not associated with Citrus fruit)
Hassaku dwarf virus	V	Closteroviridae: Closterovirus	NO5 (other reason)
Helicobasidium mompa	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Helicoverpa armigera	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Helicoverpa assulta	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Helicoverpa punctigera	Ι	Lepidoptera: Noctuidae	NO4 (not associated with Citrus)
Helicoverpa zea	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Heliothis viriplaca	Ι	Lepidoptera: Noctuidae	NO3 (present in the EU)
Heliothrips haemorrhoidalis	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Hemaspidoproctus cinereus	Ι	Hemiptera: Monophlebidae	NO2 (not associated with Citrus fruit)
Hemerophila subplagiata		Lepidoptera: Choreutidae	NO2 (not associated with Citrus fruit)
Hemiberlesia cyanophylli	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Hemiberlesia diffinis	Ι	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Hemiberlesia lataniae	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Hemiberlesia palmae	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Hemiberlesia rapax	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Hemithea aestivaria	1	Lepidoptera: Geometridae	NO3 (present in the EU)
Heterochaete tenuicula	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Hishimonus phycitis	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Hishimonus sellatus	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Holotrichia kiotoensis	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Holotrichia parallela	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Holotrichia plumbea	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Holotrichia sauteri	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Holotrichia sinensis	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Homalodisca ignorata	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Homalodisca vitripennis	1	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Homoeocerus dan	1	Hemiptera: Coreidae	NO5 (other reason)
Homona coffearia	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Hop stunt viroid	V	Pospiviroidae: Hostuviroid	NO3 (present in the EU)
Horcias nobilellus	Ι	Hemiptera: Miridae	NO2 (not associated with Citrus fruit)
Hortensia similis	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Howardia biclavis	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Hulodes caranea	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason
Hyalarcta huebneri	1	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Hyphantria cunea	1	Lepidoptera: Arctiidae	NO3 (present in the EU)
Hypocrea lixii	F	Ascomycota	NO3 (present in the EU)
Hypomeces squamosus	I	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Hypomecis punctinalis	Ι	Lepidoptera: Geometridae	NO3 (present in the EU)
Hypopyra vespertilio	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Hypsipyla robusta	1	Lepidoptera: Pyralidae	NO2 (not associated with Citrus fruit)
Icerya formicarum	1	Hemiptera: Margarodidae	NO3 (present in the EU)
Icerya purchasi	Ι	Hemiptera: Margarodidae	NO3 (present in the EU)
Icerya seychellarum	1	Hemiptera: Margarodidae	NO3 (present in the EU)
Idioscopus incertus	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Inca clathrata ssp. sommeri	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Indian citrus ringspot virus	V	Alphaflexiviridae: mandarivirus	NO2 (not associated with Citrus fruit)
Iscadia inexacta	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ischyja manlia	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ishidaella albomarginata	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Jacobiasca formosana	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Jacobiasca lybica	1	Hemiptera: Cicadellidae	NO3 (present in the EU)
Khuskia orvzae	F	Ascomycota	NO3 (present in the EU)
Kilifia acuminata	i	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Kolla atramentaria	i	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Kophene snelleni	i	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)
Labioproctus poleii	i	Hemiptera: Monophlebidae	NO2 (not associated with Citrus fruit)
	i i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
	i	Coleontera: Elateridae	NO2 (not associated with Citrus fruit)
Lacontera dotata	i	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Lasiodiplotia citricola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Lasiodipiodia iraniensis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Lasiodiplodia neudotheobromae	F	Ascomycota	NO2 (not associated with Citrus fruit)
Lasiodiplodia theobromae	F	Ascomycota	NO2 (not decended with on de rail)
Lawana imitata		Hemintera: Elatidae	NO2 (not associated with Citrus fruit)
	i	Hemiptera: Asterolecaniidae	NO2 (not associated with Citrus fruit)
	1	Hemiptera: Asterolecaniidae	NO2 (not associated with Citrus fruit)
Ledra auditura	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Lefrovothrins lefrovi	i i	Thysanoptera: Thrinidae	NO2 (not associated with Citrus fruit)
	1	Homintora: Pontatomidao	NO2 (not associated with Citrus fruit)
	1	Hemiptera: Pentatomidae	NO2 (not associated with Citrus fruit)
	1		NO2 (not associated with Citrus fruit)
	1	Homintora: Diagnididag	NO2 (not associated with citius inuit)
	1	Hemiptera. Diaspididae	NO3 (present in the EU)
	1	Hemiptera. Diaspididae	NO3 (present in the EU)
	1	Hemiptera. Diaspididae	NO2 (not associated with Citius Iruit)
		Hemiptera: Diaspididae	NO3 (present in the EU)
Lepidosaphes tubulorum	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Lepidosapnes uimi	<u> </u>		NO3 (present in the EU)
Lepropus flavovittatus		Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Leptocera sp.	1	Diptera: Sphaeroceridae	NU5 (other reason)
Leptocorisa acuta	1	Hemiptera: Alydidae	NO2 (not associated with Citrus fruit)
Leptocorisa chinensis	1	Hemiptera: Alydidae	NO4 (not associated with Citrus)
Leptopius squalidus		Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Leptops squalidus		Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Leptosphaeria bondari	F		NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason	Name
Liberibacter africanus	В	Liberibacter	NO1 (regulated in the EU)	Metcalfa pruinosa
Liberibacter americanus	В	Liberibacter	NO1 (regulated in the EU)	Metopta rectifasciata
Liberibacter asiaticus	В	Liberibacter	NO1 (regulated in the EU)	Metura elongatus
Liberibacter spp.	В		NO2 (not associated with Citrus fruit)	Microcephalothrips abo
Lindingaspis rossii	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)	Microdiplodia heterocli
Linepithema humile	1	Hymenoptera: Formicidae	NO3 (present in the EU)	Microdochium dimerun
Liorhyssus hyalinus	1	Hemiptera: Rhopalidae	NO3 (present in the EU)	Micropeltis duoseptata
Lipaphis pseudobrassicae	1	Hemiptera: Aphididae	NO3 (present in the EU)	Mictis profana
Lopholeucaspis cockerelli	1	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)	Milviscutulus mangifera
Lopholeucaspis japonica	1	Hemiptera: Diaspididae	NO1 (regulated in the EU)	Mimastra cyanura
Lorryia formosa	Α	Acarida: Tydeidae	NO3 (present in the EU)	Miridiva coreana
Lorryia formosa	Α	Acarida: Tydeidae	NO3 (present in the EU)	Mocis dalosa
Luperomorpha funesta	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)	Mocis frugalis
Luperomorpha xanthodera	1	Coleoptera: Chrysomelidae	NO3 (present in the EU)	Mocis undata
Lvgniodes hypoleuca	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Monema flavescens
Lygocoris lucorum	1	Hemiptera: Miridae	NO3 (present in the EU)	Monocesta corvli
Lymantria dispar	1	Lepidoptera: Lymantriidae	NO3 (present in the EU)	Mucor alboater
Macaldenia palumba	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)	Mycena citricolor
Machaerotypus sibiricus	1	Hemiptera: Membracidae	NO2 (not associated with Citrus fruit)	Mycosphaerella aurant
Maconellicoccus hirsutus	1	Hemiptera: Pseudococcidae	NO3 (present in the EU)	Mycosphaerella citri
Macrodactylus pumilio	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Mycosphaerella horii
Macrophomina phaseolina	F	Ascomycota	NO3 (present in the FU)	Mycosphaerella lageni
Macrosiphum euphorbiae	1	Hemiptera: Aphididae	NO3 (present in the EU)	Mycosphaerella loefore
Macrosiphum gei	-i-	Hemiptera: Aphididae	NO3 (present in the EU)	Mycosphaerella tassia
Macrostylus puberulus	t	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)	Mycosphaerella tilakii
Macugonalia cavifrons	t	Hemiptera: Cicadellidae	NO1 (regulated in the EU)	Mycterothrins glycines
Macugonalia leucomelas	1	Hemiptera: Cicadellidae	NO1 (regulated in the EU)	Myllocerus discolor
Mahasena colona	ti	Lepidontera: Psychidae	NO2 (not associated with Citrus fruit)	Myllocerus viridanus
Maladera orientalis	t	Coleontera: Scarabaeidae	NO2 (not associated with Citrus fruit)	Myrothecium roridum
Mamestra brassicae	t	Lepidoptera: Noctuidae	NO3 (present in the EU)	Myrothecium verrucaria
Marasmiellus scandens	F	Basidiomycota	NO2 (not associated with Citrus fruit)	Myzus persicae
Marasmus crinis-equis	F	Basidiomycota	NO2 (not associated with Citrus fruit)	Natsudaidai dwarf virus
Marmara salictella	ti	Lepidoptera: Gracillariidae	NO2 (not dobbolated with birds hat)	Naupactus curtus
Marona melanostigma	1	Lepidoptera: Oeconhoridae	NO2 (not associated with Citrus fruit)	Naupactus pavicularis
Maruca vitrata	1	Lepidoptera: Crambidae	NO4 (not associated with Citrus)	Naupactus tarsalis
Massaria citricola	F	Ascomucota	NO2 (not associated with Citrus fruit)	Navel orange infectiou
Medythia nigrobilineata	+	Coleontera: Chrysomelidae	NO2 (not associated with Citrus fruit)	virue
Megaconta cribaria		Hemintera: Platasnidae	NO2 (not associated with Citrus fruit)	Nectria cancri f sp. au
Megalotomus costalis		Homintora: Aludidaa	NO2 (not associated with Citrus fruit)	Nectria beterosperma
Megalurothring distalis		Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)	Nemania semens
		Colooptora: Platypodidao	NO2 (not associated with Citrus fruit)	Nematospora condi
Melopitio Iodo		Lopidoptera: Nympholidae	NO2 (not associated with Citrus)	Negaliturus baomatoos
Melanagraphia flavilinaata	+		NO4 (not associated with Citrus fruit)	Neosetenhoma samar
Melanographium eitri			NO2 (not associated with Citrus)	Neostauropus altornus
Molonommo oitrisclo		Accomucata	NO2 (not accessisted with Citrus for the	Nenhotottiv oineticene
		Ascollycola Colooptoro: Elotoridoo	NO2 (not associated with Citrus fruit)	Nephotettix virocceps
	+	Coleoptera, Elateridae	NO2 (not associated with Citrus fruit)	Nephotettix virescens
	1		NO2 (not associated with Citrus fruit)	
ivieiipona sp.	1		NU5 (other reason)	Nipaecoccus filamento
Ivienida bengalensis	1	Hemiptera: Pentatomidae	NU5 (other reason)	Nipaecoccus nipae
Menophra senilis	1	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)	Nipponovalgus angusti
Metaleurodicus cardini		Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)	Nirvana pallida

Name		Taxonomy	Reason
Metcalfa pruinosa	1	Hemiptera: Flatidae	NO3 (present in the EU)
Metopta rectifasciata	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Metura elongatus	1	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Microcephalothrips abdominalis	1	Thysanoptera: Thripidae	NO3 (present in the EU)
Microdiplodia heteroclita	F	Ascomycota	NO2 (not associated with Citrus fruit)
Microdochium dimerum	F	Ascomycota	NO3 (present in the EU)
Micropeltis duoseptata	F	Ascomycota (incertae sedis]	NO2 (not associated with Citrus fruit)
Mictis profana	1	Hemiptera: Coreidae	NO2 (not associated with Citrus fruit)
Milviscutulus mangiferae	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Mimastra cyanura	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Miridiva coreana	1	Coleoptera: Scarabaeidae	NO5 (other reason)
Mocis dalosa	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Mocis frugalis	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Mocis undata	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Monema flavescens	1	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Monocesta coryli	1	Coleoptera: Chrysomelidae	NO4 (not associated with Citrus)
Mucor alboater	F	Zygomycota	NO5 (other reason)
Mycena citricolor	F	Agaricomycotina	NO2 (not associated with Citrus fruit)
Mycosphaerella aurantia	F	Ascomycota	NO3 (present in the EU)
Mycosphaerella citri	F	Ascomycota	NO2 (not associated with Citrus fruit)
Mycosphaerella horii	F	Ascomycota	NO2 (not associated with Citrus fruit)
Mycosphaerella lageniformis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Mycosphaerella loefgreni	F	Ascomycota	NO2 (not associated with Citrus fruit)
Mycosphaerella tassiana	F	Ascomycota	NO3 (present in the EU)
Mycosphaerella tilakii	F	Ascomycota	NO2 (not associated with Citrus fruit)
Mycterothrips glycines	İ	Thysanoptera: Thripidae	NO4 (not associated with Citrus)
Myllocerus discolor	İ	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Myllocerus viridanus	i	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Myrothecium roridum	F	Ascomycota	NO3 (present in the EU)
Myrothecium verrucaria	F	Ascomycota	NO5 (other reason)
Myzus persicae	Ì	Hemiptera Aphididae	NO3 (present in the EU)
Natsudaidai dwarf virus	V		NO5 (other reason)
Naupactus curtus	İ	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Naupactus navicularis	i	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Naupactus tarsalis	i	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Navel orange infectious mottling	V	Secoviridae: sadwavirus	NO5 (other reason)
virus	1		
Nectria cancri f. sp. aurantii	F	Ascomvcota	NO2 (not associated with Citrus fruit)
Nectria heterosperma	F	Ascomycota	NO2 (not associated with Citrus fruit)
Nemania serpens	F	Ascomycota	NO3 (present in the EU)
Nematospora corvli	F	Ascomvcota	NO3 (present in the FU)
Neoaliturus haematoceps	1	Hemiptera: Cicadellidae	NO3 (present in the FU)
Neosetophoma samarorum	F	Ascomycota	NO3 (present in the FU)
Neostauropus alternus	1	Lepidoptera: Notodontidae	NO2 (not associated with Citrus fruit)
Nephotettix cincticeps	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Nephotettix virescens	1	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Nezara viridula	1	Hemiptera: Pentatomidae	NO3 (present in the FLI)
Nipaecoccus filamentosus	1	Hemiptera: Pseudococcidae	NO5 (other reason)
Nipaecoccus nipae	1	Hemiptera: Pseudococcidae	NO3 (present in the FLI)
Nippopovalgus angusticollis		Coleontera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Ninyana nallida		Hemintera: Cicadellidae	NO2 (not associated with Citrus fruit)
	<u> </u>		

Name		Taxonomy	Reason
Nirvana suturalis	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Nisia atrovenosa	Ι	Hemiptera: Meenoplidae	NO3 (present in the EU)
Nisia nervosa	Ι	Hemiptera: Meenoplidae	NO3 (present in the EU)
Non-European scale insects	Ι	Hemiptera: Coccoidea	NO5 (other reason)
(Hemiptera: Coccoidea, e.g.			
Ceroplastes sinensis)			
Non-European whiteflies	1	Hemiptera: Aleyrodidae	NO5 (other reason)
(Hemiptera: Aleyrodidae, e.g.			
Orchamoplatus citri)			
Notobitus meleagris	Ι	Hemiptera: Coreidae	NO5 (other reason)
Nysius clevelandensis	Ι	Hemiptera: Lygaeidae	NO2 (not associated with Citrus fruit)
Nysius vinitor	Ι	Hemiptera: Lygaeidae	NO2 (not associated with Citrus fruit)
Octaspidiotus stauntoniae	Ι	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Odontolabis cuvera	Ι	Coleoptera: Lucanidae	NO2 (not associated with Citrus fruit)
Odontolabis siva	Ι	Coleoptera: Lucanidae	NO2 (not associated with Citrus fruit)
Odontopera arida	Ι	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)
Odontotermes lokanandi	Ι	Isoptera: Termitidae	NO2 (not associated with Citrus fruit)
Oides decempunctata	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Oidium citri-aurantii	F	Ascomycota	NO5 (other reason)
Oiketicus kirbyi	Ι	Lepidoptera: Psychidae	NO2 (not associated with Citrus fruit)
Olethreutes metallicana	Ι	Lepidoptera: Tortricidae	NO3 (present in the EU)
Oligonychus coffeae	Α	Acarida: Tetranychidae	NO2 (not associated with Citrus fruit)
Oligonychus peruvianus	Α	Acarida: Tetranychidae	NO2 (not associated with Citrus fruit)
Oncometopia facialis	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Oncometopia orbona	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Ophisma gravata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa cantonensis	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa coronata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa disjungens	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa tirhaca	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa trapezium	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophiusa triphaenoides	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Ophthalmitis irrorataria	Ι	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)
Oraesia emarginata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Oraesia excavata	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Orasema sp.	Ι	Hymenoptera: Eucharitidae	NO5 (other reason)
Orchamoplatus citri	Ι	Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)
Ornatalcides trifidus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Orthezia insignis	Ι	Hemiptera: Ortheziidae	NO2 (not associated with Citrus fruit)
Orthobelus flavipes	Ι	Hemiptera: Membracidae	NO2 (not associated with Citrus fruit)
Orthopagus splendens	Ι	Hemiptera: Dictyopharidae	NO2 (not associated with Citrus fruit)
Otala lactea	G	Sigmurethra: Helicidae	NO3 (present in the EU)
Otiorhynchus cribricollis	Ι	Coleoptera: Curculionidae	NO3 (present in the EU)
Otiorhynchus meridionalis	Ι	Coleoptera: Curculionidae	NO3 (present in the EU)
Oulema oryzae	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Oxycetonia jucunda	I	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Oxycetonia versicolor	Ι	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Oxyodes scrobiculata	I	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Pachnaeus opalus	I	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Pandemis cerasana	Ι	Lepidoptera: Tortricidae	NO3 (present in the EU)

Name		Taxonomy	Reason
Pandemis chlorograpta	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Panonychus citri	А	Acarida: Tetranychidae	NO3 (present in the EU)
Panonychus ulmi	А	Acarida: Tetranychidae	NO3 (present in the EU)
Pantoea agglomerans (Beijerinck)	Ι	Coleoptera: Scarabaeidae	NO5 (other reason)
Gavini et al. [Syn.: Erwinia lathyri			
(Manns & Taubenhaus) Magrou]			
Pantomorus cervinus	Ι	Coleoptera: Curculionidae	NO3 (present in the EU)
Pantomorus postfasciatus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Papilio	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio anchisiades	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio androgeus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio bianor	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio cresphontes	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio demoleus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio dialis	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio helenus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio isidorus isidorus		Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio maackii	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio machaon	Ι	Lepidoptera: Papilionidae	NO3 (present in the EU)
Papilio macilentus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio memnon	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio nephelus chaon	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio paeon paeon	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio paris	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio polytes	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio protenor	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio thaiwanus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio thoas	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio xuthus	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Papilio zelicaon	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Parabemisia myricae	Ι	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Paracardiophorus pullatus	Ι	Coleoptera: Elateridae	NO2 (not associated with Citrus fruit)
Paraleyrodes minei	Ι	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Paranthostomella citri	Ι	Lepidoptera: Papilionidae	NO2 (not associated with Citrus fruit)
Parasa consocia	Ι	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Parasa sinica	Ι	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Parasaissetia nigra	Ι	Hemiptera: Coccidae	NO1 (regulated in the EU)
Paratachardina lobata	Ι	Kerriidae	NO2 (not associated with Citrus fruit)
Paratachardina theae	Ι	Hemiptera: Kerriidae	NO2 (not associated with Citrus fruit)
Parlatoria camelliae	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria cinerea	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria oleae	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria pergandii	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria proteus	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria theae	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Parlatoria ziziphi	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Pamara guttatus	1	Lepidoptera: Hesperiidae	NO2 (not associated with Citrus fruit)
Paroplapoderus pardalis	Ι	Coleoptera: Attelabidae	NO2 (not associated with Citrus fruit)
Parthenolecanium corni	1	Hemiptera: Coccidae	NO3 (present in the EU)
Parthenolecanium perlatum	F	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Parthenolecanium persicae	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
	· · · ·		

Name		Taxonomy	Reason
Pellicularia alba	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Pellicularia kolegora	F		NO4 (not associated with Citrus)
Penicillium citrinum	F	Ascomycota	NO3 (present in the EU)
Penicillium digitatum	F	Ascomycota	NO3 (present in the EU)
Penicillium diversum	F	Ascomycota	NO3 (present in the EU)
Penicillium expansum	F	Ascomycota	NO3 (present in the EU)
Penicillium fructigenum	F	Ascomycota	NO5 (other reason)
Penicillium italicum	F	Ascomycota	NO3 (present in the EU)
Penicillium ulaiense	F	Ascomycota	NO3 (present in the EU)
Penicillium viridicatum	F	Ascomycota	NO3 (present in the EU)
Peniophora albobadia	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Peniophora cinerea	F	Ascomycota	NO3 (present in the EU)
Pentastiridius apicalis	1	Hemiptera: Cixiidae	NO2 (not associated with Citrus fruit)
Penthimiola bella	1	Hemiptera: Cicadellidae	NO3 (present in the EU)
Perenniporia ochroleuca	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Periconia byssoides	F	Ascomycota	NO3 (present in the EU)
Peridroma saucia	1	Lepidoptera: Noctuidae	NO3 (present in the EU)
Perilampsis woodi	1	Diptera: Tephritidae	NO1 (regulated in the EU)
Perperus lateralis	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Pestalotia guepinii	F	Ascomycota	NO3 (present in the EU)
Pestalotiopsis citri	F	Ascomycota	NO2 (not associated with Citrus fruit)
Pestalotiopsis neglecta	F	Ascomycota	NO3 (present in the EU)
Petrobia harti	Α	Acarida: Tetranychidae	NO3 (present in the EU)
Petrobia latens	Α	Acarida: Tetranychidae	NO3 (present in the EU)
Peyronellaea pinodella	F	Ascomycota	NO3 (present in the EU)
Peyronellaea pinodes	F	Ascomycota	NO3 (present in the EU)
Pezothrips kellyanus	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Phaeosaccardinula guajavae	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phalera assimilis	Ι	Lepidoptera: Notodontidae	NO2 (not associated with Citrus fruit)
Phalera bucephala	Ι	Lepidoptera: Notodontidae	NO3 (present in the EU)
Phellinus noxius	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Phenacoccus madeirensis	Ι	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Phenacoccus manihoti	Ι	Hemiptera: Pseudococcidae	NO4 (not associated with Citrus)
Phenacoccus solenopsis	Ι	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Phenacoccus tucumanus	Ι	Hemiptera: Pseudococcidae	NO2 (not associated with Citrus fruit)
Philephedra tuberculosa	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Phloeobius alternans	Ι	Coleoptera: Anthribidae	NO2 (not associated with Citrus fruit)
Phlyctinus callosus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Phoma exigua	F	Ascomycota	NO3 (present in the EU)
Phoma limonii	F	Ascomycota	NO5 (other reason)
Phoma macrophoma	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phoma nainiensis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phoma puttemansii	F	Ascomycota	NO5 (other reason)
Phyllobius longicornis	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Phyllocnistis citrella	Ι	Lepidoptera: Gracillariidae	NO3 (present in the EU)
Phyllocnistis saligna	1	Lepidoptera: Gracillariidae	NO3 (present in the EU)
Phyllocoptruta oleivora	Α	Acarida: Eriophyidae	NO3 (present in the EU)
Phyllodes consobrina	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Phyllodes eyndhovi	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Phyllodes punctifascia	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Phyllosticta adusta	F	Ascomycota	NO3 (present in the EU)

Name		Taxonomy	Reason
Phyllosticta ampelicida	F	Ascomycota	NO3 (present in the EU)
Phyllosticta arethusa	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta aurantiicola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta aurantiifolia	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta beltranii	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta capitalensis	F	Ascomycota	NO3 (present in the EU)
Phyllosticta citribraziliensis	F	Ascomycota	NO5 (other reason)
Phyllosticta citricarpa	F	Ascomycota	NO1 (regulated in the EU)
Phyllosticta citrichinaensis	F	Ascomycota	NO5 (other reason)
Phyllosticta citrimaxima	F	Ascomycota	NO5 (other reason)
Phyllosticta disciformis	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta erratica	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta hesperidearum	F	Ascomycota	NO3 (present in the EU)
Phyllosticta hypoglossi	F	Ascomycota	NO5 (other reason)
Phyllosticta limonum	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta longispora	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phyllosticta scabiosa	F	Ascomycota	NO2 (not associated with Citrus fruit)
Phymatotrichopsis omnivora	F	Ascomycota	NO1 (regulated in the EU)
Physauchenia bifasciata	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Physopelta gutta	1	Hemiptera: Largidae	NO2 (not associated with Citrus fruit)
Phytophthora boehmeriae	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora cactorum	F	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora capsici	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora cinnamomi	F	Ascomycota	NO3 (present in the EU)
Phytophthora citricola	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora citrophthora	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora cryptogea	F	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora hibernalis	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora humicola	С	Pseudofungi: Oomycetes	NO5 (other reason)
Phytophthora inundata	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora nicotianae	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora nicotianae var.	С	Pseudofungi: Oomycetes	NO5 (other reason)
parasitica		C <i>i</i>	, , , , , , , , , , , , , , , , , , , ,
Phytophthora palmivora	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytophthora syringae	С	Pseudofungi: Oomycetes	NO3 (present in the EU)
Phytoplasma asteris	В	Acholeplasmatales:	NO3 (present in the EU)
		Acholeplasmataceae	, , , , , , , , , , , , , , , , , , ,
Phytoplasma aurantifolia	В	Acholeplasmatales:	NO1 (regulated in the EU)
		Acholeplasmataceae	
phytoplasma: "16Sr Group I	В	Acholeplasmatales:	NO2 (not associated with Citrus fruit)
phytoplasma"		Acholeplasmataceae	
Piazomias lewisi	1	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Piesma cinereum	1	Hemiptera: Piesmatidae	NO2 (not associated with Citrus fruit)
Pigeon pea witches' broom	В	Acholeplasmatales:	NO2 (not associated with Citrus fruit)
phytoplasma		Acholeplasmataceae	
Pindara illibata	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Pinnaspis aspidistrae	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Pinnaspis strachani	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Pithomyces sacchari	F	Ascomycota	NO2 (not associated with Citrus fruit)
Plagiodera versicolora	1	Coleoptera: Chrysomelidae	NO3 (present in the EU)
Planococcus citri	Ι	Hemiptera: Pseudococcidae	NO3 (present in the EU)

Name		Taxonomy	Reason
Platyja umminea	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Platymycteropsis mandarinus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Platynota stultana	Ι	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Platypus parallelus	Ι	Coleoptera: Patypotidae	NO2 (not associated with Citrus fruit)
Platypus wesmaeli	Ι	Coleoptera: Patypotidae	NO2 (not associated with Citrus fruit)
Plectipus	U	Unknown	NO5 (other reason)
Plenodomus tracheiphilus	F	Ascomycota	NO1 (regulated in the EU)
Pleospora disrupta	Ι	Ascomycota	NO3 (present in the EU)
Pleospora herbarum	F	Ascomycota	NO3 (present in the EU)
Plesiommata corniculata	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Plusiodonta coelonota	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Podagricomela nigricollis	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Podagricomela weise	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Podonectria coccicola	F	Ascomycota	NO5 (other reason)
Podontia lutea	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Poecilocoris duraei	1	Hemiptera: Scutelleridae	NO5 (other reason)
Poecilophilides rusticola	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Polygonia c-aureum	I	Lepidoptera: Nymphalidae	NO2 (not associated with Citrus fruit)
Polyphagotarsonemus latus	А	Acarida: Tarsonemidae	NO3 (present in the EU)
Praelongorthezia citricola	1	Hemiptera: Ortheziidae	NO2 (not associated with Citrus fruit)
Praelongorthezia olivicola	Ì	Hemiptera: Ortheziidae	NO2 (not associated with Citrus fruit)
Pravs citri	i	Lepidoptera: Yponomeutidae	NO3 (present in the EU)
Prays nephelomina	Ì	Lepidoptera: Yponomeutidae	NO2 (not associated with Citrus fruit)
Prays parili	Ì	Lepidoptera: Yponomeutidae	NO2 (not associated with Citrus fruit)
Prodiplosis longifila	Ì	Diptera: Cecidomviidae	NO2 (not associated with Citrus fruit)
Protaetia fusca	Ì	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Protopulvinaria pyriformis	Ì	Hemiptera: Coccidae	NO3 (present in the EU)
Pseudanaphothrips achaetus	Ì	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Pseudatelus raptorius	1	Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
Pseudaulacaspis pentagona	Ì	Hemiptera: Diaspididae	NO3 (present in the EU)
Pseudischnaspis acephala	Ì	Hemiptera: Diaspididae	NO2 (not associated with Citrus fruit)
Pseudocercospora angolensis	F	Ascomycota	NO1 (regulated in the EU)
Pseudocercospora citri	F	Ascomycota	NO2 (not associated with Citrus fruit)
Pseudococcus aonidum	i	Hemiptera: Pseudococcidae	NO5 (other reason)
Pseudococcus calceolariae	1	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Pseudococcus citriculus	Ì	Hemiptera: Pseudococcidae	NO5 (other reason)
Pseudococcus comstocki	Ì	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Pseudococcus cryptus	Ì	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Pseudococcus longispinus	I	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Pseudococcus viburni	i	Hemiptera: Pseudococcidae	NO3 (present in the EU)
Pseudocochliobolus pallescens	F	Ascomycota	NO5 (other reason)
Pseudocribrolecanium andersoni	i	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Pseudomonas fluorescens	B	Pseudomonales:	NO5 (other reason)
	-	Pseudomonadaceae	
Pseudomonas svringae	В	Pseudomonadales:	NO3 (present in the EU)
· · · · · · · · · · · · · · · · · · ·	_	Pseudomonadaceae	
Pseudomonas svringae pv.	В	Pseudomonales:	NO4 (not associated with Citrus)
garcae		Pseudomonaceae	
Pseudomonas syringae pv.	В	Pseudomonadales:	NO3 (present in the EU)
syringae		Pseudomonadaceae	······································
Pseudomonas viridiflava	В	Pseudomonadales:	NO3 (present in the EU)

Name		Taxonomy	Reason
		Pseudomonadaceae	
Pseudoparlatoria parlatorioides	1	Hemiptera: Diaspididae	NO3 (present in the EU)
Psorosticha melanocrepida	1	Lepidoptera: Depressariidae	NO2 (not associated with Citrus fruit)
Psorosticha zizyphi	1	Lepidoptera: Depressariidae	NO2 (not associated with Citrus fruit)
Psylla citricola	1	Hemiptera: Psyllidae	NO2 (not associated with Citrus fruit)
Psylla citrisuga	1	Hemiptera: Psyllidae	NO2 (not associated with Citrus fruit)
Psylla coccinea	1	Hemiptera: Psyllidae	NO2 (not associated with Citrus fruit)
Pulvinaria decorata	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Pulvinaria flavescens	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Pulvinaria floccifera	1	Hemiptera: Coccidae	NO3 (present in the EU)
Pulvinaria polygonata	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Pulvinaria sp.	1	Hemiptera: Coccidae	NO5 (other reason)
Pvcnoporus coccineus	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Pylargosceles steganioides	1	Lepidoptera: Geometridae	NO2 (not associated with Citrus fruit)
Pyrenochaeta destructiva	B	Pseudomonales:	NO2 (not associated with Citrus fruit)
	-	Pseudomonaceae	
Pyrops candelaria	1	Hemiptera: Fulgoridae	NO2 (not associated with Citrus fruit)
Pythium anhanidermatum	C	Pseudofungi: Oomycetes	NO3 (present in the EU)
Pythium debaryanum	C	Oomycota	NO3 (present in the EU)
Pythium debaryanum	C	Pseudofungi: Oomycetes	NO3 (present in the EU)
Pythium spinosum	C	Pseudofungi: Comycetes	NO2 (not associated with Citrus fruit)
Pythium splendens	C	Pseudofungi: Oomycetes	NO3 (present in the EU)
Pythium ultimum	C	Pseudofungi: Oomycetes	NO3 (present in the EU)
Pythum voyans	C	Psoudofungi: Oomycetes	NO3 (present in the EU)
Pythum vexans	E	F seddoluligi. Colligeetes	NO2 (pet apposited with Citrue fruit)
Railiulalia Selfatula	F	Hemintere: Desudesessides	NO2 (not associated with Citrus fruit)
Rasilococcus iruncauspinus	1	Herriptera. Pseudococcidae	NO2 (not associated with Citrus fruit)
Recilia dorsalis			NO2 (not associated with Citrus fruit)
Redua alba		Dhipphialan, Dhipphianana	
Rhizobium radiobacter	В	Rhizobiales: Rhizobiaceae	NO3 (present in the EU)
Rhizobium mizogenes	В	Rhizobiales: Rhizobiaceae	NO3 (present in the EU)
Rhizopus stoionifer	F	Zygomycota	NO3 (present in the EU)
Rhomborrhina japonica	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Rhomborrhina resplendens	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Rhomborrhina unicolor	1	Coleoptera: Scarabaeidae	NO2 (not associated with Citrus fruit)
Rhopalosiphum maidis		Hemiptera: Aphididae	NO3 (present in the EU)
Rhynchodiplodia citri	F	Ascomycota	NO5 (other reason)
Rhynchophorus palmarum	1	Coleoptera: Curculionidae	NO1 (regulated in the EU)
Rhyncophorus palmarum	1	Coleoptera: Curculionidae	NO1 (regulated in the EU)
Rhytia hypermnestra	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Rhytidhysteron rufulum	F	Ascomycota	NO2 (not associated with Citrus fruit)
Ricania japonica	1	Hemiptera: Ricaniidae	NO3 (present in the EU)
Ricania simulans	1	Hemiptera: Ricaniidae	NO2 (not associated with Citrus fruit)
Ricania speculum		Hemiptera: Ricaniidae	NO3 (present in the EU)
Ricania taeniata	Ι	Hemiptera: Ricaniidae	NO2 (not associated with Citrus fruit)
Rigidoporus hypobrunneus	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Rigidoporus microporus	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Riptortus	1	Hemiptera: Alydidae	NO5 (other reason)
Riptortus linearis	1	Hemiptera: Alydidae	NO2 (not associated with Citrus fruit)
Rondibtlis chengluensis	U	Unknown	NO5 (other reason)
Rosellinia bunodes	F	Ascomycota	NO2 (not associated with Citrus fruit)
	+		

Name		Taxonomy	Reason
Rosellinia pepo	F	Ascomycota	NO2 (not associated with Citrus fruit)
Rothschildia hesperus (hespera)	Ι	Lepidoptera: Saturniidae	NO2 (not associated with Citrus fruit)
Ruggieria glaucescens	F	Ascomycota	NO3 (present in the EU)
Saissetia coffeae	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Saissetia miranda	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Saissetia neglecta	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Saissetia oleae	Ι	Hemiptera: Coccidae	NO3 (present in the EU)
Salurnis marginellus	Ι	Hemiptera: Flatidae	NO2 (not associated with Citrus fruit)
Samia cynthia	Ι	Lepidoptera: Saturniidae	NO3 (present in the EU)
Satsuma dwarf virus	V	Secoviridae: sadwavirus	NO1 (regulated in the EU)
Scepticus insularis	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Scepticus tigrinus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Schizophyllum commune	F	Basidiomycota	NO3 (present in the EU)
Schizothyrium pomi	F	Ascomycota	NO3 (present in the EU)
Sciobius granosus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Scirtothrips aurantii	Ι	Thysanoptera: Thripidae	NO1 (regulated in the EU)
Scirtothrips citri	Ι	Thysanoptera: Thripidae	NO1 (regulated in the EU)
Scirtothrips dorsalis	Ι	Thysanoptera: Thripidae	NO1 (regulated in the EU)
Scirtothrips inermis	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Scirtothrips mangiferae	Ι	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Sclerotinia sclerotiorum	F	Ascomycota	NO3 (present in the EU)
Scolecopeltis tropicalis	F		NO5 (other reason)
Scolypopa australis	Ι	Hemiptera: Ricaniidae	NO2 (not associated with Citrus fruit)
Scotinophara lurida	Ι	Hemiptera: Pentatomidae	NO4 (not associated with Citrus)
Scudderia furcata	Ι	Orthoptera: Acrididae	NO2 (not associated with Citrus fruit)
Septobasidium bogoriense	F	Basidiomycota	NO4 (not associated with Citrus)
Septobasidium citricolum	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Septobasidium paulense	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Septobasidium	F	Basidiomycota	NO2 (not associated with Citrus fruit)
pseudopedicellatum		-	· · · · · · · · · · · · · · · · · · ·
Septobasidium saccardinum	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Septoria arethusa	F	Ascomycota	NO2 (not associated with Citrus fruit)
Septoria aurentiicola	F	Ascomycota	NO2 (not associated with Citrus fruit)
Septoria cattanei	F	Ascomycota	NO2 (not associated with Citrus fruit)
Septoria citri	F	Ascomycota	NO3 (present in the EU)
Septoria limonum	F	Ascomycota	NO3 (present in the EU)
Serrodes campana	-	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Serrognathus titanus	Ι	Coleoptera: Lucanidae	NO2 (not associated with Citrus fruit)
Setora postornata	Ι	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Settela citricola	F		NO2 (not associated with Citrus fruit)
Seuratia millardetii	F	Ascomycota	NO2 (not associated with Citrus fruit)
Sibine sp.	Ι	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Sibine trimaculata	-	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Silana farinosa	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Singhiella citrifolii	Ι	Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)
Sinomegoura citricola	1	Hemiptera: Aphididae	NO2 (not associated with Citrus fruit)
Siphanta acuta		Hemiptera: Flatidae	NO2 (not associated with Citrus fruit)
Siphanta hebes		Hemiptera: Flatidae	NO2 (not associated with Citrus fruit)
Siphoninus phillyreae		Hemiptera: Aleyrodidae	NO3 (present in the EU)
Sirothyrium citri	F	Ascomycota	NO5 (other reason)
Sitobion ibarae	1	Hemiptera: Aphididae	NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason
Solenoplea ceracea	F		NO2 (not associated with Citrus fruit)
Solenopsis gayi	-	Hymenoptera: Formicidae	NO2 (not associated with Citrus fruit)
Solenopsis gayi	Ι	Hymenoptera: Formicidae	NO5 (other reason)
Solenosthedium chinensis	Ι	Hemiptera: Scutelleridae	NO5 (other reason)
Sonesimia grossa	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Sophonia orientalis	Ι	Hemiptera: Cicadellidae	NO2 (not associated with Citrus fruit)
Sparganothis sulfureana		Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Spegazzinia ornata	F	Ascomycota	NO5 (other reason)
Spegazzinia tessarthra	F	Ascomycota	NO5 (other reason)
Speiredonia retorta	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Sphaceloma fawcettii var.	F	Ascomycota	NO1 (regulated in the EU)
scabiosae		2	(°°,
Sphaceloma punicae	F	Ascomycota	NO5 (other reason)
Sphaeropsis tumefaciens	F	Ascomycota	NO2 (not associated with Citrus fruit)
Sphictyrtus chrysis	Ι	Hemiptera: Coreidae	NO2 (not associated with Citrus fruit)
Sphrageidus similis	Ι	Lepidoptera: Lymantriidae	NO3 (present in the EU)
Spintherophyta semiaurata	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Spiroplasma citri	В	Entomoplasmatales:	NO1 (regulated in the EU)
- F - F		Spiroplasmataceae	
Spodoptera eridania	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Spodoptera exigua	Ι	Lepidoptera: Noctuidae	NO3 (present in the EU)
Spodoptera frugiperda	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Spodoptera littoralis	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Spodoptera litura	Ι	Lepidoptera: Noctuidae	NO1 (regulated in the EU)
Spodoptera ornithogalli	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Spoladea recurvalis	Ι	Lepidoptera: Crambidae	NO3 (present in the EU)
Sporobolomyces roseus	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Sporocybe hybrida	F	Ascomycota	NO2 (not associated with Citrus fruit)
Squamura dea	Ι	Lepidoptera: Metarbelidae	NO2 (not associated with Citrus fruit)
Squamura quadrinota	Ι	Lepidoptera: Metarbelidae	NO2 (not associated with Citrus fruit)
Squamura tetraonis	Ι	Lepidoptera: Metarbelidae	NO2 (not associated with Citrus fruit)
Stathmopoda auriferella	Ι	Lepidoptera: Stathmopodidae	NO3 (present in the EU)
Stauropus fagi	Ι	Lepidoptera: Notodontidae	NO3 (present in the EU)
Stelidota geminata	Ι	Coleoptera: Nitidulidae	NO3 (present in the EU)
Stictis radiata	F	Ascomycota	NO2 (not associated with Citrus fruit)
Strawberry latent ringspot virus	V	Secoviridae	NO3 (present in the EU)
Stroggylocephalus agrestis	Ι	Hemiptera: Cicadellidae	NO3 (present in the EU)
Symmathetes kollari	-	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Sympiezomias velatus	Ι	Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)
Sympis rufibasis	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Synanthedon hector	Ι	Lepidoptera: Sesiidae	NO2 (not associated with Citrus fruit)
Syncephalastrum racemosum	F	Zygomycota	NO5 (other reason)
Sypnoides simplex	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Takahashia japonica	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Tambinia debilis	Ι	Hemiptera: Tropiduchidae	NO2 (not associated with Citrus fruit)
Tapajosa rubromarginata	Ι	Hemiptera: Cicadellidae	NO1 (regulated in the EU)
Tarsonemus cryptocephalus	А	Acarida: Tarsonemidae	NO5 (other reason)
Tarsonemus sp.	А	Acarida: Tarsonemidae	NO5 (other reason)
Tatumella citrea	В	Enterobacteriales:	NO2 (not associated with Citrus fruit)
		Enterobacteriaceae	
Teratopactus nodicollis		Coleoptera: Curculionidae	NO2 (not associated with Citrus fruit)

Name		Taxonomy	Reason
Terthron albovittatum	Ι	Hemiptera: Delphacidae	NO5 (other reason)
Tessaratoma papillosa	Ι	Hemiptera: Pentatomidae	NO2 (not associated with Citrus fruit)
Tessaratoma quadrata	Ι	Hemiptera: Pentatomidae	NO2 (not associated with Citrus fruit)
Tetranychus cinnabarinus	Α	Acarida: Tetranychidae	NO3 (present in the EU)
Tetranychus kanzawai	Α	Acarida: Tetranychidae	NO3 (present in the EU)
Tetranychus mexicanus	Α	Acarida: Tetranychidae	NO2 (not associated with Citrus fruit)
Tetranychus urticae	Α	Acarida: Tetranychidae	NO3 (present in the EU)
Tetreuaresta punctipennata	1	Diptera: Tephritidae	NO1 (regulated in the EU)
Thanatephorus cucumeris	F	Basidiomycota	NO3 (present in the EU)
Theba pisana	G	Sigmurethra: Helicidae	NO3 (present in the EU)
Thielavopsis basicola	F	Ascomycota	NO3 (present in the EU)
Thlaspida biramosa japonica	Ι	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Thosea sinensis	1	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Thosea sinensis coreana	1	Lepidoptera: Limacodidae	NO2 (not associated with Citrus fruit)
Thrips andrewsi		Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips coloratus	Ι	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips flavus	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Thrips hawaiiensis	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Thrips imaginis	1	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips malloti	Ι	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips nigropilosus	Ι	Thysanoptera: Thripidae	NO3 (present in the EU)
Thrips palmi	Ι	Thysanoptera: Thripidae	NO1 (regulated in the EU)
Thrips safrus	Ι	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips setipennis	1	Thysanoptera: Thripidae	NO2 (not associated with Citrus fruit)
Thrips tabaci	1	Thysanoptera: Thripidae	NO3 (present in the EU)
Throscoryssa citri	1	Coleoptera: Chrysomelidae	NO2 (not associated with Citrus fruit)
Thyas juno	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Tinocallis kahawaluokalani	1	Hemiptera: Aphididae	NO3 (present in the EU)
Tinocallis zelkowae	1	Hemiptera: Aphididae	NO3 (present in the EU)
Tiracola grandirena	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Tomoplagia costalimai	1	Diptera: Tephritidae	NO1 (regulated in the EU)
Tomoplagia phaedra		Diptera: Tephritidae	NO1 (regulated in the EU)
Tortrix excessana	1	Lepidoptera: Tortricidae	NO2 (not associated with Citrus fruit)
Toumeyella cubensis	Ι	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Toxoptera aurantii	Ι	Hemiptera: Aphididae	NO3 (present in the EU)
Toxoptera citricidus	Ι	Hemiptera: Aphididae	NO1 (regulated in the EU)
Trametes villosa	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Trialeurodes abutiloneus	1	Hemiptera: Aleyrodidae	NO2 (not associated with Citrus fruit)
Trialeurodes vaporariorum	1	Hemiptera: Aleyrodidae	NO3 (present in the EU)
Trichoderma harzianum	F	Ascomycota	NO2 (not associated with Citrus fruit)
Trichoderma viride	F	Ascomycota	NO5 (other reason)
Trichoplusia ni	1	Lepidoptera: Noctuidae	NO3 (present in the EU)
Trichurus gorgonifer	F	Ascomycota	NO3 (present in the EU)
Trigona hyalinata amazonensis	1	Hymenoptera: Apidae	NO2 (not associated with Citrus fruit)
Trigona testacea cupira	1	Hymenoptera: Apidae	NO2 (not associated with Citrus fruit)
Trigona trinidadensis	Ι	Hymenoptera: Apidae	NO2 (not associated with Citrus fruit)
Trigonodes hyppasia	Ι	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Trioza erytreae	Ι	Hemiptera: Triozidae	NO1 (regulated in the EU)
Trirhithrum nigerrimum		Diptera: Tephritidae	NO1 (regulated in the EU)
Unaspis citri	1	Hemiptera: Diaspididae	NO1 (regulated in the EU)

Name		Taxonomy	Reason
Unaspis euonymi	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Unaspis yanonensis	Ι	Hemiptera: Diaspididae	NO3 (present in the EU)
Uredo citri	F	Basidiomycota	NO2 (not associated with Citrus fruit)
Ustulina deusta	F		NO2 (not associated with Citrus fruit)
Vespa crabro	1	Hymenoptera: Vespidae	NO3 (present in the EU)
Vespa mandarina	1	Hymenoptera: Vespidae	NO2 (not associated with Citrus fruit)
Vinsonia stellifera	1	Hemiptera: Coccidae	NO2 (not associated with Citrus fruit)
Wound tumor virus	V	Reoviridae: phytoreovirus	NO4 (not associated with Citrus)
Xanthochroa waterhousei	Ι	Coleoptera: Oedemeridae	NO2 (not associated with Citrus fruit)
Xanthodes transversa	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Xanthomonas citri pv. aurantifolii	В	Xanthomonadales:	NO1 (regulated in the EU)
		Xanthomonadaceae	
Xanthomonas citri pv. bilvae	В	Xanthomonadales:	NO1 (regulated in the EU)
		Xanthomonadaceae	
Xanthomonas citri pv. citri	В	Xanthomonadales:	NO1 (regulated in the EU)
		Xanthomonadaceae	
Xanthomons alfalfae subsp.	В	Xanthomonadales:	NO1 (regulated in the EU)
citrumelonis		Xanthomonadaceae	
Xestia c-nigrum	1	Lepidoptera: Noctuidae	NO3 (present in the EU)
Xylella fastidiosa	В	Xanthomonadales:	NO1 (regulated in the EU)
		Xanthomonadaceae	
Xylena formosa	1	Lepidoptera: Noctuidae	NO2 (not associated with Citrus fruit)
Zaprionus tuberculatus	1	Diptera: Drosophilidae	NO3 (present in the EU)
Zeuzera coffeae	Ι	Lepidoptera: Cossidae	NO2 (not associated with Citrus fruit)

ANNEX 7. Oranges and mandarins Alert List

This Alert List is divided into two parts. Please refer to section 2.3 of this report for details of the categories retained in each Part.

It was not possible to further rank the pests within the two parts by their level of risk. Pests are listed by type (acari, insect) and then in alphabetical order. No pathogen was retained for the Alert List.

The Alert List was finalized at October 2016, and does not contain new information that may have become available after that date.

CONTENTS

PART 1 – PESTS WITH HIGH ECONOMIC IMPORTANCE AND MORE LIKELY TO TRANSFER

Insects

Amyelois transitella (Lepidoptera: Pyralidae) Citripestis sagittiferella (Lepidoptera: Pyralidae) Ecdytolopha aurantianum (Lepidoptera: Tortricidae) Marmara gulosa (Lepidoptera: Gracillariidae) Proeulia auraria (Lepidoptera: Tortricidae) Resseliella citrifrugis (Diptera: Cecidomyiidae) Thaumatotibia leucotreta (Lepidoptera: Tortricidae) Zaprionus indianus (Diptera: Drosophilidae)

PART 2 – PESTS WITH LESSER ECONOMIC IMPORTANCE AND MORE LIKELY TO TRANSFER, OR HIGH **ECONOMIC IMPORTANCE BUT LESS** LIKELY TO TRANSFER

Acari

Brevipalpus chilensis (Acarida: Tenuipalpidae) Eotetranychus kankitus (Acarida: Tetranychidae) Eotetranychus sexmaculatus (Acarida: Tetranychidae) Tuckerella knorri (Acarida: Tuckerellidae)

Insects

Adoxophyes cyrtosema (Lepidoptera: Tortricidae) Archips argyrospilus (Lepidoptera: Tortricidae)

Argyrotaenia sphaleropa (Lepidoptera: Tortricidae) Biprorulus bibax (Hemiptera: Pentatomidae) Coscinoptycha improbana (Lepidoptera: Carposinidae)

Cryptothelea variegata (Lepidoptera: Psychidae) Ctenopseustis obliguana (Lepidoptera: Tortricidae) Deudorix isocrates (Lepidoptera: Lycaenidae) Diaprepes abbreviatus (Coleoptera: Curculionidae) Dichocrocis punctiferalis (Lepidoptera: Crambidae) Egira curialis (Lepidoptera: Noctuidae) Erthesina fullo (Hemiptera: Pentatomidae) Leptoglossus zonatus (Hemiptera: Coreidae) Lobiopa insularis (Coleoptera: Nitidulidae) Neosilba zadolicha (Diptera: Lonchaeidae) *Nipaecoccus viridis* (Hemiptera: Pseudococcidae) Paracoccus burnerae (Hemiptera: Pseudococcidae) Paracoccus marginatus (Hemiptera: Pseudococcidae) Platynota flavedana (Lepidoptera: Tortricidae) Praelongorthezia praelonga (Hemiptera: Ortheziidae) Prays endocarpa (Lepidoptera: Yponomeutidae) Prays endolemma (Lepidoptera: Yponomeutidae) Proeulia chrysopteris (Lepidoptera: Tortricidae) Pseudococcus maritimus (Hemiptera:

Pseudococcidae)

PART 1 – PESTS WITH HIGH ECONOMIC IMPORTANCE AND MORE LIKELY TO **TRANSFER**

Insects

Amyelois transitella (Lepidoptera: Pyralidae)

Location of life stages on plant parts: Larvae feed inside fruits and nuts. Eggs are on mummy nuts or new crop nuts (UC IPM, 2014). On Citrus, eggs in the navel end of injured oranges, splits and wounds of citrus fruit (such as for Navel oranges) and larvae feed in or near the core (Biosecurity Queensland, 2011). Attacks damaged, overripe and dried fruits and nuts (AQIS, 1999) but such fruits may be unnoticed and be in consignments.

Fruit pathway: fruits (including nuts) (NSW, 2012).

Other pathways: plants for planting (NSW, 2012).

Hosts: Polyphagous on a variety of fruits and nuts. Hosts include *Citrus*, *Citrus limon*, *Citrus x paradisi*, Citrus sinensis, Carya illinoensis, Ceratonia siliqua, Coffea, Cydonia oblonga, Eriobotrya japonica, Ficus, Forchhammeria, Genipa americana, Gleditsia triacanthos, Heteromeles arbutifolia, Juglans regia, Malus

pumila, Phoenix dactylifera, Pistacia vera, Pithecellobium flexicaule, Prunus armeniaca, Prunus domestica, Prunus dulcis, Prunus persica, Punica granatum, Pyrus communis, Vitis vinifera, Yucca, Ziziphus (AQIS, 1999).

Distribution: North America: Mexico; USA (Arizona, California, Florida, Georgia, Oklahoma, Texas, Washington); Central America: Costa Rica; South America: Brazil (Aqis, 1999), Argentina (USDA, 2015). Biosecurity Queensland (2011) mentions Canada but no other record was found.

Absent from the EU. Italy is mentioned in several publications (e.g. AQIS, 1999; USDA, 2015); this record appears to originate from an interception (Trematerra, 1988). Similarly, A. transitella entered Austria (Essl and Rabitsch, 2002), but is rated as not established. Although Lopez-Vaamonde (2010) reports these countries as 'invaded' the pest does not seem to be established. A. transitella is also recorded as present in Germany according to Fauna Europaea (de Jong et al., 2014); however, no record was found, and it may also refer to an interception. Consequently, the pest was considered absent from the EU, with an uncertainty.

Damage: A. *transitella* is a serious pest of some nut crops (e.g. almonds, pistachios, walnut), and also grazes on Citrus fruit, causing surface scarring that favours entry by decay-causing organisms, leading to fruit quality reduction and fruit drop. Larvae are in splits and wounds of citrus fruit, feeding in or near the core (Biosecurity Queensland, 2011). The pest is identified as the most important and damaging pest of pistacchio (UC IPM, 2015) and the most important insect pest of almonds (Agudelo-Silva et al., 1995). It causes extensive losses to nut crops in the USA, through feeding damage and contamination of nuts with frass and webbing, and it also vectors saprophytic fungi that infect crops (Ampt et al., 2015). Routine spraying is done (UC IPM 2014). On almond, it vectors *Aspergillus flavus* (Palumbo et al., 2014).

Other information: Intercepted in Korea on fresh oranges (first case) and walnuts (in the past) from the USA (Hong et al, 2012). *A. transitella* is a pest of concern for Australia and is subject to alerts (Biosecurity Queensland, 2011; NSW, 2012). Proposed in answer to the EPPO questionnaire on pests of concern for Citrus.

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Yes
another crop, also vector)		

References:

- Agudelo-Silva F, Zalom FG, Hom A, Hendricks L. 1995. Dormant Season Application Of Steinernema Carpocapsae (Rhabditida: Steinernematidae) and Heterorhabditis sp. (Rhabditida: Heterorhabditidae) on Almond for Control of Overwintering Amyelois transitella and Anarsia lineatella (Lepidoptera: Gelechiidae). Florida Entomologist 78(3) September, 1995
- Ampt EA, Bush DS, Siegel JP, Berenbaum MR. 2015. Larval Preference and Performance of Amyelois transitella (Navel Orangeworm, Lepidoptera: Pyralidae) in Relation to the Fungus Aspergillus flavus. Environ Entomol. 2016 Feb;45(1):15562. doi: 10.1093/ee/nvv160. (abstract)
- AQIS. 1999. Draft import risk analysis for the importation of fresh table grapes [Vitis vinifera I.] from California (USA), March 1999. Australian Quarantine & Inspection Service, Canberra, Australia
- Biosecurity Queensland. 2011. Navel orangeworm Have you seen this citrus pest? Department of Employment, Economic Development and Innovation Biosecurity Queensland.
- de Jong Y. et al. 2014. Fauna Europaea all European animal species on the web. Biodiversity Data Journal 2: e4034. doi: 10.3897/BDJ.2.e4034.
- Essl F, Rabitsch W. 2002. Neobiota in Österreich. Umweltbundesamt, Wien, 432 pp.
- Hong K-J, Hong S-W, Ryu C-S, Lee Y-H. 2012. Navel orangeworm (Lepidoptera: Pyralidae) intercepted on fresh oranges from the USA at the Korean port of entry. Korean Journal of Applied Entomology 2012 51 3 295-297 (abstract)
- Lopez-Vaamonde C et al. (2010) Lepidoptera. Chapter 11. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(2): 603–668. doi: 10.3897/biorisk.4.50
- NSW. 2012. Exotic Pest Alert: Navel orangeworm. Factsheet. New South Wales Government. Department of Primary Industries.
- Palumbo JD, Mahoney NE, Light DM, Siegel J, Puckett RD, Michailides TJ. 2014. Spread of Aspergillus flavus by navel orangeworm (Amyelois transitella) on almond. Plant Dis. 98:1194-1199.
- Trematerra P. 1988. Paramyelois transitella (Walker) lepidottero americano presente nelle noci importate dalla California. Informatore Fitopatologico, 38(12), 51-55.
- UC IPM. 2014. Navel Orangeworm. Scientific name: Amyelois transitella. UC Pest Management Guidelines Pistachio. University of California Agriculture and Natural Resources.
- USDA. 2015. Risk Assessment for the Importation of Fresh Lemon (Citrus limon (L.) Burm. f.) Fruit from Northwest Argentina into the Continental United States. August 3, 2015. Rev: 14. United States Department of Agriculture.

Citripestis sagittiferella (Lepidoptera: Pyralidae)

Location of life stages on plant parts: Larvae feed in the rind and pith of the fruit, later deeper into the flesh (FERA, 2013).

Fruit pathway: Yes.

Other pathways: none identified.

Hosts: Rutaceae are major hosts, predominantly Citrus. *Citrus, Citrus aurantiifolia, Citrus aurantium, Citrus limon, Citrus maxima, Citrus medica, Citrus reticulata, Citrus sinensis, Citrus x paradise* (major); *Citrus hystrix, Canavalia gladiate, Cassia fistula* (wild host) (CABI CPC). There are also host records for Leguminosae (but they may refer to *Mussidia pectinicornella*, incorrectly synonymised with *C. sagittiferella* for some years) (FERA, 2013).

Distribution: Asia: Brunei Darussalam, Indonesia, Malaysia, Singapore, Thailand; anectodal reports for Vietnam (CABI CPC; FERA, 2013). Vietnam, Philippines (Le Quoc, 2013).

Invalid records: India, Japan, Papua New Guinea, Sri Lanka and Taiwan (due to Mussidia pectinicornella wrongly considered as a synonym) (CABI CPC).

Damage: *C. sagittiferella* causes premature fruit drop, or spoilage (due to tunnels and frass), entry of pathogens causing secondary rot in the fruit (FERA, 2013). It is mentioned as a minor pest of Citrus in most sources. However, there are reports from Vietnam (where the pest has been present since about 2011) of major losses of up to 80% to grapefruit and oranges at some sites (FERA, 2013). From Asian references, it is mentioned in a list of economic pests for Asia and the Pacific (for Thailand, FAO, 1987). It is one of the most important moths in Malaysia and Indonesia, especially on grapefruit at low altitude (Reuther, 1989).

Other information: Intercepted in the UK in 2011 (*C. aurantifolia* fruit from Malaysia), suspect findings (from Malaysia) on fruit of *Citrus latifolia* and *Citrus* sp. (Persian lime), and suspected larvae found in an orange (by the public) (FERA, 2013). Reported as spreading in Vietnam, Thailand, Indonesia, Philippines (Le Quoc, 2013). Proposed in answer to the EPPO questionnaire on pests of concern for Citrus.

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Yes	
-----------------------	------------------	-------------------------	--

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- FAO. 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. Technical Document No. 135/1987. Asia and Pacific Plant Protection Commission. Regional Office for Asia and the Pacific, FAO, Bangkok, Thailand.
- FERA. 2013. Recommendation for interceptions and findings of Citripestis sagittiferella, a citrus fruit boring caterpillar. 18 September 2013. The Food and Environment Research Agency, UK.
- Le Quoc D, Nguyen TKT, Nguyen VH, Nguyen MC, Nguyen TTC. 2013. Infestation of Pomelo Fruit Borer Citripestis Sagittiferella (Moore) (Lepidoptera: Pyralidae) in Vietnam and the Effect of Compact Fluorescent Lamp as a Repellent. first International Symposium on Superfruits: Myth or Truth?. Ho Chi Minh City, Vietnam on 1-3 July 2013. International Tropical Fruits Network. Presentation available on the page: http://www.itfnet.org/v1/2014/05/proceedings-of-the-internationalsymposium/#pses3.
- Reuther W. 1989. The Citrus Industry: Crop protection, postharvest technology, and early history of citrus research in California. UCANR Publications. 374 pages.

Ecdytolopha aurantianum (Lepidoptera: Tortricidae)

Location of life stages on plant parts: On Citrus, eggs on green or mature fruit, larvae inside fruits, pupae in the soil (Gastaminza, 2012). Females usually deposit one egg per fruit (150-200 eggs in their lifetime); larvae penetrate into the fruit, and some reach the core of citrus fruit and feed on seeds (USDA, 2003). Larvae feed occasionally on leaves and stems (Gilligan and Epstein, 2014).

Fruit pathway: Yes, as eggs and larvae.

Other pathways: Plants for planting, soil.

Hosts: Polyphagous, incl. *Citrus, Citrus reticulata, Citrus sinensis, Citrus x paradisiaca, Litchi chinensis, Macadamia, Musa x paradisiaca, Theobroma cacao* (CABI CPC), *Citrus limon, Citrus limonia* (as lemones, limas) (Gastaminza, 2012), *Melicoccus bijugatus* (first record, Cabrera-Asencio et al., 2012). Brown et al.

(2008) also lists Sapindus saponaria, Psidium guajava, Averrhoa carambola, Punica granatum, Eriobotrya japonica, Prunus persica, Litchi chinensis, Macadamia integrifolia, Musa.

Distribution: Central America: Costa Rica (CABI CPC), Nicaragua (Cabrera-Asencio et al., 2012); Caribbean: Trinidad and Tobago (CABI CPC), Puerto Rico (Cabrera-Asencio et al., 2012); South America: Argentina, Brazil (CABI CPC), Colombia, Peru, Ecuador, Venezuela (Cabrera-Asencio et al., 2012).

Damage: *E. aurantianum* causes direct damage to fruit by feeding, and causes lesions, premature drop and discoloration (CABI CPC; Gastaminza, 2012). Larval damage to fruit may lead to secondary infection by fungus and bacteria (Gilligan and Epstein, 2014). E. aurantianum is a major pest of neotropical fruits (Cabrera-Asencio et al., 2012). It has gained importance in Brazil in recent years (Cáceres, 2006). In Brazil, it became a key pest of Citrus in the 1980s (previously secondary), reaching damages in the order of 50 million USD per year in the 1990s in the State of São Paulo; losses corresponded to 1-2 boxes of fruits per plant in more intensely-attacked localities (Parra et al., 2004). It is reported as a pest of Citrus in Argentina (Sinavimo, 2016). USDA (2003) mention that it is possibly one of the most important pests of oranges in Brazil, with estimated yield losses reaching up to 50 % in Sao Paulo. It has also became a major pest of Citrus in Trinidad, causing up to 40 % losses. *E. aurantianum* is difficult to control (USDA, 2003). It causes damage to macadamia nuts (Blanco-Metzler et al., 2009). Damage on other hosts was not studied.

Other information: Intercepted on Citrus (from Europhyt, in Dropsa review, 2016). In the USA, intercepted on *Citrus, Byrsonima crassifolia, Litchi sinensis, Macadamia* (from South America and Central America) (commodities not mentioned; Brown, 2011); *Gymnandrosoma* sp. are also intercepted (USDA, 2003). Proposed in answer to the EPPO questionnaire on pests of concern for Citrus. The synonym Gymnandrosoma aurantianum is used in many publications (e.g. Brown et al., 2008; Brown, 2011; Cabrera-Asencio et al., 2012).

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Not known
-----------------------	------------------	--------------------------------------

References:

- Blanco-Metzler H, WattAD, Cosens D. 2009. The effect of parasitism on the population dynamics of the macadamia nutborer Gymnandrosoma aurantianum (Lepidoptera: Tortricidae). Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 57 (4): 1245-1252.
- Brown JW, Robinson G, Powell JA. 2008. Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). http://www.tortricid.net/foodplants.asp.
- Brown JW. 2011. Tools for identifying the larvae of leafrollers (Lepidoptera: Tortricidae) frequently intercepted at U.S. ports of entry. Draft. September 2011.
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Cabrera-Asencio I, Vélez AL, Henríquez SA, Santiago-Blay JA. 2012. Melicoccus bijugatus Jacquin (Sapindaceae), quenepa: a new host plant record for the Citrus Fruit Borer, Gymnandrosoma aurantianum Lima, 1927 (Lepidoptera: Tortricidae) and the genus Gymnandrosoma in Puerto Rico. Life: The Excitement of Biology 1(1), 3-16
- Cáceres S. 2006. Guía Práctica Para la Identificación y el Manejo de las Plagas de Citrus. Programa de Reposicionamiento de la Citricultura Correntina
- Dropsa review. 2016. Excel file of pests as Deliverable to the project, with background in : Steffen K, Grousset F, Petter F, Suffert M, Schrader G. 2016. EU-project DROPSA: first achievements regarding pathway analyses for fruit pests. Bulletin OEPP/EPPO Bulletin, 45 (1) : 148–152.

Gastaminza G. 2012. Course on agricultural zoology, 23 October 2012, San Miguel de Tucumán.

Gilligan TM, Epstein M. 2014. Tortricids of Agricultural Importance. Interactive Keys developed in Lucid 3.5. Last updated August 2014. http://idtools.org/id/leps/tortai/index.html

- Parra JRP, Bento JMS, Garcia MS, Yamamoto PT, Vilela EF, Leal WS. 2004. Development of a control alternative for the citrus fruit borer, Ecdytolopha aurantiana (Lepidoptera, Tortricidae): from basic research to the grower. Revista Brasileira de Entomologia 48(4): 561-567, dezembro 2004
- Sinavimo. 2016. Ecdytolopha aurantianum. Sistema Nacional Argentino de Vigilancia y Monitoreo de plagas. http://www.sinavimo.gov.ar/plaga/ecdytolopha-aurantianum
- USDA. 2003. Importation of Fresh Commercial Citrus Fruit: Grapefruit (Citrus x paradisi Macfad.); Lime (C. aurantiifolia [Christm.] Swingle); Mandarin Orange or Tangerine (C. reticulata Blanco); Sweet Orange (C. sinensis [L.] Osbeck); Tangelo (C. x tangelo J.W. Ingram & H.E. Moore); from Peru into the United States. A Pathway-Initiated Plant Pest Risk Analysis. October, 2003

Marmara gulosa (Lepidoptera: Gracillariidae)

Location of life stages on plant parts: eggs on stems/fruits of citrus and neighbouring crops, larvae mine in fruit rind or stem, pupae on twig, leaf or stem (Stelinski and Rogers, 2013).

Fruit pathway: Yes, as eggs or larvae.

Other pathways: Plants for planting, cut flowers. Uncertain pathways: pods, nuts.

Hosts: Polyphagous, with hosts in 31 families; originally a native pest of *Salix* and has shifted hosts to attack many non-native plants; hosts incl. *Citrus, Gossypium, Vigna unguiculata* (as cowpeas), *Solanum melongena, Vitis* (as grape), *Capsicum, Prunus domestica* (as plum), *Cucurbita* (as pumpkin, and zucchini), ornamentals, *Prunus armeniaca, Persea americana, Citrullus lanatus* (Stelinski and Rogers, 2013), *Malus domestica, Prunus avium, Gossypium hirsutum, Actinidia chinensis, Nerium oleander, Olea europaea, Prunus persica, Prunus salicina, Capsicum annuum, Carica papaya, Juglans regia, Salix lasiolepsis* (Guerrero et al., 2012), *Phaseolus* (as beans), nuts, ornamentals (*Salix* and oleander), vegetables, weeds (UC IPM, 2013).

Distribution: North America: Mexico, USA (Arizona, California, Florida, and Texas); Caribbean: Cuba (Guerrero et al., 2012).

Damage: Larvae of *Marmara gulosa* tunnel the rind of citrus fruit; damage is cosmetic but makes the fruit unmarketable for the fresh market (Guerrero et al., 2012; Stelinski and Rogers, 2013). *Marmara gulosa* causes 5-80% damage on fruit in susceptible Citrus varieties, which are at higher risk if they are adjacent to crops in which populations build up (cotton and beans) (UC IPM, 2013). *Marmara gulosa* is economically important in California, Arizona, Northern Mexico and Cuba. In 1995, in California, one outbreak caused 80-90 % fruit loss in certain groves (Stelinski and Rogers, 2013). Damage on Citrus attributed to *Marmara salictella* in the 1980s-90s is now considered to have been due to *Marmara gulosa*. It was reported to prefer grapefruit to navel oranges, and navel oranges to lemons (Maurer et al., 1998).

Other information: In California, the pest was originally thought to be M. salictella, but was later described as *Marmara gulosa*; in additon citrus fruit in Mexico are attacked by a distinctly different and undescribed species of Marmara (Semet, 2010). M. salictella is recorded as a pest of citrus in some publications, but such records are thought to refer to *Marmara gulosa* (Gracilliridae.net, 2016).

known	Recorded impact: High	Intercepted: Not known	Spreading/invasive: Not known
-------	-----------------------	------------------------	--------------------------------------

References:

Gracilliridae.net. 2016. Marmara gulosa Guillén & Davis, 2001. Global Taxonomic Database of Gracillariidae (Lepidoptera). http://www.gracillariidae.net/species/show/1880

- Guerrero S, Weeks J, Hodges A, Martin K, Leppla N. 2012. Citrus Pests. Department of Entomology, University of Florida and Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. http://idtools.org/id/citrus/pests (http://idtools.org/id/citrus/pests/factsheet.php?name=Citrus+peelminer)
- Maurer MA, Kerns DL, Tellez T. 1998. Citrus Peel Miner Marmara salictella Monitoring Techniques and Control Measures 1996- 97, http://cals.arizona.edu/pubs/crops/az1051/az10515.html 1/7
- Semet P. 2010. Taxonomy, Biogeography and Pest Status of Marmara sp. in Northern Mexico and California Citrus Production. MSc thesis, Faculty of California Polytechnic State University, San Luis Obispo, USA.
- Stelinski LL, Rogers M. 2013. citrus peelminer, Marmara gulosa Guillèn and Davis (Insecta: Lepidoptera: Gracillariidae) [data sheet]. Featured creatures. UF/IFAS. University of Florida http://entnemdept.ufl.edu/creatures/citrus/citrus peelminer.htm

UC IPM. 2013. Citrus Peelminer. Marmara gulosa. Citrus - How to Manage Pests. UC Pest Management Guidelines. University of California Agriculture and Natural Resources. http://ipm.ucanr.edu/PMG/r107303111.html

Proeulia auraria (Lepidoptera: Tortricidae)

Location of life stages on plant parts: eggs on leaves, larvae feed on leaves (which they roll and fold), also on flowers, growing points and externally on fruit (CABI CPC). The pest overwinters as larvae on plants (twigs, bark, mummified fruit) (ArystaLifeScience, 2003). For Citrus, larvae in Navel oranges, bore at the calyx end (Ripa and Larral., 2008).

Fruit pathway: yes, as larvae.

Other pathways: plants for planting.

Uncertain pathway: cut flowers and branches.

Hosts: Polyphagous, incl. *Citrus sinensis, Actinidia deliciosa, Malus domestica, Platanus orientalis, Prunus armeniaca, Prunus avium, Prunus domestica, Prunus persica, Pyrus communis, Robinia pseudoacacia, Vitis vinifera* (CABI CPC), *Vaccinium* (Blueberries Chile, 2011-2012), *Juglans regia*, also new hosts records such as *Cotoneaster, Cercis siliquastrum, Rosa, Nothofagus obliqua, Pittosporum tobira, Punica granatum, Buddleja davidii* (Cepeda and Cubillos, 2011).

Distribution: South America: Chile (CABI CPC).

Damage: Larvae are very voracious, and able to destroy large numbers of buds, to cut flowers, and to bore open galleries on fruits (at the surface, but varying in depth) (ArystaLifeScience, 2003). Wounds on fruit allow entry of pathogenic organisms causing decay (Ripa and Larral., 2008). *P. auraria* has moved to plants that are exotic to its native range, such as apple, stone fruits, grapevine (CABI CPC). Increasing severity of infestations is reported (Reyes-Garcia et al., 2014). *P. auraria* was initially considered a *Citrus* pest, but has grown in importance as a pest of *Vitis*, and is the most common *Proeulia* species in Chile (Biosecurity Australia, 2005). Increasing severity of infestations is reported (Reyes-Garcia et al., 2014); however occasionnally (especially in Coquimbo region) very intense attacks have been reported with damage to a significant proportion of fruit especially Navel oranges (Ripa and Larral, 2008). On grapevine, it destroys buds and berries (superficial damage or complete destruction; Botrytis rots also develop inside infested bunches) and vegetative material (Biosecurity Australia, 2005).

Other information: In relation to transport in trade, mature larvae cannot withstand low cold storage temperatures for over 2-3 weeks; first-instar overwintering larva are hidden on plant parts and may withstand cold conditions (6-8°C) for over a month (CABI CPC). *P. auraria* has quarantine significance for at least China, Korea Republic, Taiwan and the USA. The pest was intercepted in the USA and Japan on blueberries (BlueberriesChile 2011-2012). *Proeulia* spp. have been intercepted in the USA on Citrus (Brown, 2011).

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Not
another crop)		known

References:

ArystaLifeScience. 2003. Descripción y Biología de Eulia.

http://www.arystalifescience.cl/productos/trampas/descripcion/EULIA_BIOLOGIA.pdf (Accesses August 2015)

Bergmann J. 2015. Identification of the pheromones of *Proeulia auraria* and P. triquetra. (Lepidoptera: Tortricidae). p 27 In Proceedings (Livro de resumos) of 'IX Encontro Brasileiro de Ecologia Química' (EBEQ), 1-4 December 2015, Belo Horizonte, Brazil. 91 pp.

Biosecurity Australia, 2005. Revised Draft Import Risk Analysis Report for Table Grapes from Chile. Part B. Commonwealth of Australia.

BlueberriesChile, 2011-2012. Estadisticas De Inspecciones De Arandanos. Temporada 2011/2012. Programa De Pre-Embarque. Sag/Usda-Aphis/Asoex. Powerpoint presentation.

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Cepeda DE, Cubillos GE. 2011. Descripción del último estado larvario y recopilación de registros de hospederos de siete especies de Tortrícidos de importancia económica en Chile (Lepidoptera: Tortricidae). Gayana 75(1): 39-70, 2011
- Reyes-Garcia L, Cuevas Y, Ballesteros C, Curkovic T, Löfstedt C, Bergmann J. 2014. A 4-component sex pheromone of the Chilean fruit leaf roller *Proeulia auraria* (Lepidoptera: Tortricidae). Cien. Inv. Agr. 41(2):187-196. 2014

Ripa R, Larral P (editors). 2008. Manejo de plagas en paltos y cítricos. http://www.avocadosource.com/books/ripa2008/ripa.htm.

Resseliella citrifrugis (Diptera: Cecidomyiidae)

Location of life stages on plant parts: eggs on stem and calyx area of the fruit or inside the

mesocarp/albido; larvae burrow into the fruit, tunneling in the white tissue. Last instar larvae overwinter in fruit or in soil; there may be many larvae in one fruit (USDA, 2014).

Fruit pathway: Several Chinese authors state that it may spread through the transport of mature fruit, which according to USDA (2014) indicates that infested fruit can escape post-harvest culling.

Other pathways: plants for planting with fruit or soil, soil on its own.

Hosts: *Citrus*, incl. *Citrus maxima*, *Citrus paradisi* (USDA, 2014), grapefruit and orange (there is an uncertainty because this was a rough translation from a Chinese article where the scientific name is not indicated; Huang et al., 2001).

Distribution: Asia: China (Fujian, Hubei, Hunan, Guangdong, Guangxi, Guizhou, Sichuan - USDA, 2014 citing others). Has spread within China (Huang et al., 2001 - with an uncertainty, as from Chinese).

Damage: In China, *R. citrifugis* is an important pest of grapefruit and pummelo and is subject to control programmes. It causes serious fruit drop and can affect product yield and storage quality, with serious economic losses. Yield losses of 10-40 % or more reported. Fruit infestations of 10-70% have been reported in citrus orchards. The most damaging period is before the fruit harvest period, but the pest can also cause damage afterwards or overwinter in the fruit. (USDA, 2014 citing other).

Other information: USDA (2014) note that Gagné (2010) lists *R. citrifrugis* Jiang as a nomina nudum (i.e. the scientific name is not yet agreed as it was not associated with a full description). However, the pest was analysed because it is used in multiple sources on Citrus in China.

Recorded impact: High	Intercepted: Not known	Spreading/invasive: Yes
		(uncertain)

References:

USDA. 2014. Importation of Citrus spp. from China into the continental United States. A Qualitative, Pathway-Initiated Pest Risk Assessment. February 7, 2014.

Huang J, Zhou S, Zhou Z, Zhou S, Cheng J, Deng P. 2001. Morphology and Bionomics of *Resseliella citrifrugis* Jian [in Chinese with abstract in English]. Journal of Hunan Agricultural University (Natural Sciences). Vol. 27, No. 6, p 445-448.

Thaumatotibia leucotreta (Lepidoptera: Tortricidae)

Location of life stages on plant parts: Larvae feed inside fruits, nuts, maize ears or cotton bolls (EPPO AL, 2011). Eggs on fruit, or on leaves, fallen fruit, smooth-surfaced tissue. Hard green citrus fruit may be infested. Larvae prefer the navel end but can burrow anywhere on the fruit. There may be one to three larvae per citrus fruit. Pupae in soil, bark crevices, fallen fruit, debris (Guerrero et al., 2012).

Fruit pathway: yes, as eggs or larvae.

Other pathways: plants for planting, soil.

Hosts: Polyphagous, incl. *Citrus* (Guerrero et al., 2012), other fruit (*Ananas comosus, Annona muricata, Averrhoa carambola, Diospyros kaki, Eriobotrya japonica, Juglans regia, Litchi chinensis, Macadamia ternifolia, Mangifera indica, Musa x paradisiaca, Persea americana, Prunus persica, Psidium guajava, Punica granatum, Vitis), vegetables and field crops (<i>Capsicum, Gossypium, Ricinus communis, Zea mays, Abelmoschus esculentus, Phaseolus, Sorghum*) and others (*Camellia, Coffea arabica, Olea europaea, Quercus, Theobroma cacao*) (EPPO GD). Apple and pear are not hosts (Pringle et al., 2015). Most relevant hosts in EPPO PRA (2013) are considered to be *Capsicum, Citrus reticulata* and hybrids, *Citrus sinensis* and hybrids, *Citrus paradisi, Gossypium, Litchi chinensis, Macadamia, Mangifera indica, Prunus persica, Prunus persica, Persea americana, Psidium guajava, Punica granatum, Quercus robur, Ricinus communis, Rosa, Solanum melongena, Vitis vinifera, Zea mays.*

Distribution: Africa: Angola, Benin, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo Democratic Rep., Cote d'Ivoire, Eritrea, Ethiopia, Gambia, Ghana, Kenya, Madagascar, Malawi, Mali, Mauritius, Mozambique, Niger, Nigeria, Reunion, Rwanda, Saint Helena, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe; Asia: Israel (first found 1984) (EPPO GD).

Damage: Damage is caused by larvae feeding on fruit. This can cause premature ripening and fruit drop (Guerrero et al., 2012). On citrus, fruit losses as a result of *T. leucotreta* attacks range from below 2% to as high as 90% (1998 reference); on peach, in the early 1970s, it became a serious pest in the Transvaal (South Africa), where peaches were grown near citrus; percentages of infested fruit was in average of 29%, with a maximum of 55%. Significant yield losses (\geq 30%) have also been reported in macadamia crops (1986 reference); in Uganda on cotton, *T. leucotreta* caused 20% yield loss of early sown varieties and 42-90% yield loss of late varieties. On Capsicum, there are conflicting information on damage (EPPO, 2013).

Other information: Intercepted in several EU countries (EPPO GD), incl. on *Citrus paradisi* and *Citrus sinensis fruits*, rose cut flowers, etc. (EPPO AL, 2011). An outbreak was reported in the Netherlands on *Capsicum annuum* (origin unknown) and was eradicated (EPPO GD). Proposed in answer to the EPPO questionnaire on pests of concern for Citrus. At December 2015, *T. leucotreta* was under consideration for regulation in the EU (EU Standing Committee, December 2015). *T. leucotreta* is on EPPO A2 List of pests recommended for regulation.

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Yes
-----------------------	------------------	-------------------------

References:

EPPO AL. 2011. Thaumatotibia leucotreta (Lepidoptera: Tortricidae). False codling moth.

https://www.eppo.int/QUARANTINE/Alert_List/insects/thaumatotibia_leucotreta.htm

EPPO GD. EPPO Global database. http://gd.eppo.int

EPPO. 2013. Pest Risk Analysis for Thaumatotibia leucotreta. 13-19032. Available from www.eppo.int.

EU Standing Committee. http://ec.europa.eu/food/plant/standing_committees/sc_plant_health/index_en.htm

- Guerrero S, Weeks J, Hodges A, Martin K, Leppla N. 2012. Citrus Pests. Department of Entomology, University of Florida and Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. http://idtools.org/id/citrus/pests (http://idtools.org/id/citrus/pests/factsheet.php?name=False+codling+moth)
- Pringle KL, Heunis JM, de Villiers M. 2015. Phytosanitary Host Status of Apples as a Host for False Codling Moth, *Thaumatotibia leucotreta* (Meyrick) (Lepidoptera: Tortricidae). African Entomology 23(1):234-238. doi: http://dx.doi.org/10.4001/003.023.0127

Zaprionus indianus (Diptera: Drosophilidae)

Location of life stages on plant parts: eggs are laid on eggs in unripe fruits (possibly referring mostly to figs, Pires et al., 2008). Larvae in fruit.

Fruit pathway: Yes, as eggs or larvae. There is an uncertainty on whether it attacks undamaged fruit on a number of host species (see Damage). However, it has been intercepted in the EU, incl. on *Citrus, Diospyros kaki, Mangifera indica, Psidium guajava*. Consequently, it was considered associated with Citrus fruit.

Other pathways: plants for planting with fruit.

Hosts: Highly polyphagous, 74 hosts species in 31 families, including *Citrus, Ficus carica, Phoenix dactylifera, Psidium guajava* (EPPO GD), *Malphigia emarginata, Punica granatum, Eriobotrya japonica, Dimocarpus longan* (Renkema et al., 2013), *Actinidia, Phoenix dactylifera, Vitis, Ziziphus, Musa* (Al-Jboory and Katbeh-Bader, 2012), *Annona glabra, Anacardium occidentale, Citrofortunella microcarpa, Citrus sinensis, Citrus aurantium, Citrus × paradisi, Fortunella* (van der Linde et al., 2006), Vitis (van Timmeren and Isaacs, 2014). It has adapted to new host species. In the USA and Canada where it was introduced recently, adults were trapped in a number of crops whose host status is not yet known, such as: *Prunus persica, Vaccinium* (as blueberry), *Rubus idaeus* (as raspberry), *Rubus* (as blackberry) *Fragaria* (as strawberry), *Prunus* (as plums, cherry), *Solanum lycopersicum* (Pennsylvania, Joshi et al., 2014; Canada, Renkema et al., 2013; van Timmeren and Isaacs, 2014).

Distribution: Africa: Benin, Cape Verde, Congo, Cote d'Ivoire, Egypt, Kenya, Madagascar, Malawi, Mauritius, Morocco, Mozambique, Niger, Nigeria, Reunion, Sao Tome & Principe, Seychelles, South Africa, Tanzania, Madeira (Portugal), Islas Canarias (Spain) (EPPO GD), Cameroon, Comoros, Gabon, Guinea, Senegal, Sudan (CABI CPC). Asia: India, Iran, Israel, Saudi Arabia (EPPO GD), Lebanon (2009; Moussa, 2009), Jordan (Al-Jboory and Katbeh-Bader, 2012), Iraq, Nepal, Oman, Pakistan (Al T'Oma and van der Linde, 2010), United Arab Emirates (CABI CPC); also unpublished report for Azerbaijan (Al T'Oma and van der Linde, 2010). South America: Argentina, Brazil (1998), Uruguay (EPPO GD); Van der Linde (2013) also maps records for Ecuador, Peru; unpublished record for Venezuela mentioned in Al T'Oma and van der Linde (2010); North America: Canada (Ontario, Quebec, first records; uncertainty if can overwinter and will establish; Renkema et al., 2013); Mexico (2002); USA (2005) (first Arizona, California, Florida, Virginia, then spread North, to e.g. Michigan, New York; Joshi et al., 2014, CABI CPC); Central America: Panama (2003); Caribbean: unpublished reports for Cayman Isl. cited in Al T'Oma et al. (2010).

Europe: uncertain record: Spain (mainland: Carles-Tolrá, 2009). No confirmation could be found, and this was considered with an uncertainty. Unreliable records : Italy and Austria (EPPO GD).

Damage: *Z. indianus* is often associated with damaged or fallen rotting fruit, but it is able to invade figs (Renkema et al., 2013), Malphigia emarginata and Dimocarpus longan (Steck, 2005). There are also records

of infestation of tree-ripened *Punica granatum* and *Eriobotrya japonica* (Renkema et al., 2013). In Brazil, it caused 40% losses of fig harvest when it was introduced (Mattos Machado et al., 2005). It is reported to infest ripened peaches in Brazil (Joshi et al., 2014) and some authors (e.g. van der Linde et al., 2006) report substantial losses in *Citrus* (oranges), peach and fig in Brazil (based on Santos, 2003; the original publication could not be consulted). Crop damage is also reported in grapevine in Virginia (Markow et al., 2014 citing others). For *Vaccinium* in Mississippi, it is still uncertain whether it will damage blueberry in the field, although it is a possible concern in packing houses (Werle et al., 2012). For grapevine in Michigan, it is still unclear whether it will become a pest or will attack only damaged fruit (van Timmeren and Isaacs, 2014).

Other information: Intercepted in the EU on fruits of *Citrus aurantium, Citrus paradisi, Diospyros kaki* (no host record), *Mangifera indica, Psidium guajava*, and on *Passiflora edulis* (commodity not specified) (Dropsa review, using Europhyt data). *Z. indianus* is ecologically versatile. In Brazil, a single introduction in 1998, was followed by rapid spread (Mattos-Machado et al., 2005), and subsequent spread within South and North America.

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Yes
another crop)		

References:

- Al T'Oma Z, Rahmman Mohammad A., van der Linde K. 2010. First records of *Zaprionus indianus* (Diptera: Drosophilidae) from the Basra governorate in Iraq. Dros. Inf. Serv. 93 (2010)
- Al-Jboory IJ, Katbeh-Bader A. 2012. First Record of Zaprionus indianus (Gupta, 1970). (Drosophilidae: Diptera) in Jordan. World Applied Sciences Journal 19 (3): 413-417, 2012, doi: 10.5829/idosi.wasj.2012.19.03.2768
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Carles-Tolrá M. 2009. Zaprionus indianus Gupta: género y especie nuevos para la Península Ibérica (Diptera: Drosophilidae). Boletín Sociedad Entomológica Aragonesa, nº 45 (2009); 316.
- EPPO GD. EPPO Global database. http://gd.eppo.int
- Joshi NK, Biddinger DJ, Demchak K, Deppen A. 2014. First Report of *Zaprionus indianus* (Diptera: Drosophilidae) in Commercial Fruits and Vegetables in Pennsylvania. J. Insect Sci. 14(259): 2014; DOI: 10.1093/jisesa/ieu121

Markow TA, Hanna G, Riesgo-Escovar JR, Tellez-Garcia AA, Polihronakis Richmond M, Nazario-Yepiz NO, Ramírez Loustalot Laclette M, Carpinteyro-Ponce J, Pfeiler E. 2014. Population genetics and recent colonization history of the invasive drosophilid *Zaprionus indianus* in Mexico and Central America. Biological Invasions, Volume 16, Issue 11, pp 2427–2434

- Mattos-Machado T, Solé-Cava AM, David JR, Bitner-Mathé B. 2005. Allozyme variability in an invasive drosophilid, *Zaprionus indianus* (Diptera: Drosophilidae): comparison of a recently introduced Brazilian population with Old World populations. Ann. Soc. entomol. Fr. (n.s.), 2005, 41 (1); 7-13.
- Pires DJ, Bélo M, Barbosa JC. Life history estivatives in two geographic strains of *Zaprionus indianus* Gupta, 1970 (Diptera: Drosophilidae). Biodiversidade v.7 n.1 2008
- Renkema JM, Miller M, Fraser H, Légaré J-P, Hallett RH. 2013. First Records of *Zaprionus indianus* Gupta (Diptera: Drosophilidae) from Commercial Fruit Fields in Ontario and Quebec, Canada. J. ent. Soc. Ont. 144: 125–130.
- Steck C. 2005. Pest Alert. Zaprionus indianus Gupta (Diptera: Drosophilidae), A Genus and Species New to Florida and North America. DACS-P-01677. Florida Department of Agriculture and Consumer Services, Division of Plant Industry 2005.

Van der Linde K, Steck GJ, Hibbard K, Birdsley JS, Alonso LM, Houle D. 2006. First Records of Zaprionus indianus (Diptera: Drosophilidae), a Pest Species on Commercial Fruits from Panama and the United States of America. Florida Entomologist, 89(3):402-404.

Van der Linde K. 2013. Website with distribution maps. http://www.kimvdlinde.com/professional/Zaprionus%20distribution.php

Van Timmeren S, Isaacs R. 2014. Drosophila suzukii in Michigan vineyards, and the first report of *Zaprionus indianus* from this region. Journal of Applied Entomology, Volume 138, Issue 7, Pages 519–527.

PART 2 – PESTS WITH LESSER ECONOMIC IMPORTANCE AND MORE LIKELY TO TRANSFER, OR HIGH ECONOMIC IMPORTANCE BUT LESS LIKELY TO TRANSFER

Acari

Brevipalpus chilensis (Acarida: Tenuipalpidae)

Location of life stages on plant parts: For citrus, low populations on fruit and under the calyx (Olivares et al., 2012). Association with citrus fruit at harvest is mentioned in Childers and Rodrigues (2011) as a possible mean of transferring Brevipalpus mites to further trees by wind or contact. This mechanism is also considered possible (with an uncertainty) for transfer once imported (although USDA, 2015 mentions that Tenuipalpidae are generally slow moving).

Fruit pathway: Yes, as mobile forms, with an uncertainty.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Polyphagous, hosts include *Citrus limon, Citrus reticulata, Citrus sinensis, Malus domestica, Cydonia oblonga, Pyrus communis, Prunus armeniaca, Rubus idaeus, Ficus carica* (Koch and Waterhouse, 2000), *Actinidia deliciosa, Annona cherimola, Ficus benghalensis, Ligustrum sinense, Vitis vinifera* (mentioned as main hosts), and also *Antirrhinum, Chrysanthemum, Citrus aurantium, Citrus limon, Citrus sinensis, Diospyros kaki, Geranium* (CABI CPC).

Distribution: South America: Chile (CABI CPC). Not present in Argentina (misidentified; Regonat, 2014). Doubtful record: India (Vacante, 2015). This is considered doubtful because Mani et al. (2013, from India) mention its presence only in Chile.

Damage: Among fruit trees, grapevines are the most economically affected (CABI CPC). *B. chilensis* causes necrosis of tissues in leaves and buds, and leads to reduced vigour of the grapevine plants; at high density, it may cause 30-40% reduction of yield (Olivares, 2008). However, this level of damage seems to refer to past references according to USDA (2015). For Citrus, it affects lemons, oranges, clementines and, more frequently, mandarins, but without economic damage (very low levels of mites on leaves and fruit, but there are pre- and post-harvest treatments) (CABI CPC). It causes minor direct damage (in very high populations, stains on fruit), but is important because it is a quarantine pest for some countries and causes rejection of fruit at export (Ripa and Larral, 2008; Olivares et al., 2012). On kiwifruit, it scars shoots and petioles (CABI CPC), but does not cause damage. It is considered to pose a significant threat to agriculture in many countries as a high risk exotic pest introduction due to its wide host range and destructive potential. Its ability to vector plant viruses is unknown (Childers and Rodrigues, 2011).

Other information: Intercepted on lemons (CABI CPC). The quarantine concern through fruit exports is limited by the cold storage treatments to which citrus fruits and grapes are subjected, provided that storage at 3-4°C extends beyond 3 to 4 weeks (CABI CPC). Proposed in answer to the EPPO questionnaire on pests of concern for citrus.

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Not
another crop)		known

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Childers CC, Rodrigues JCV. 2011. An overview of Brevipalpus mites (Acari: Tenuipalpidae) and the plant viruses they transmit. Zoosymposia 6: 180–192 (2011)
- Koch KC, Waterhouse DF. 2000. The distribution and importance of arthropods associated with agriculture and forestry in Chile (Distribucion e importancia de los artropodos asociados a la agricultura y silvicultura en Chile). ACIAR Monograph No. 68, 234 pp.

Mani M, Shivaraju C, Narendra Kulkarni S. 2013. The Grape Entomology. Springer Science & Business Media. 202 pages.

Olivares N, Vargas R, Luppichini P, Cardemil A. 2012. Ficha técnica Nº8. Reconocimiento, monitoreo y manejo de *Brevipalpus* chilensis Baker en cítricos. INIA, La Cruz

Olivares N. 2008. Manejo organico de Brevipalpus chilensis. Informativo. INIA Raihuen. Gobierno de Chile.

Regonat ME. 2014. Morphological Systematic Brevipalpus Donnadieu (Acari: Tenuipalpidae) on Grapevine in Argentina. sns N.º 5-6, julio-diciembre de 201

Ripa R, Larral P (editors). 2008. Manejo de plagas en paltos y cítricos. http://www.avocadosource.com/books/ripa2008/ripa.htm.

- USDA. 2015. Risk Assessment for the Importation of Fresh Lemon (Citrus limon (L.) Burm. f.) Fruit from Northwest Argentina into the Continental United States. August 3, 2015. Rev: 14. United States Department of Agriculture.
- Vacante V. 2015. The Handbook of Mites of Economic Plants: Identification, Bio-Ecology and Control. CABI, 21 déc. 2015 890 pages

Eotetranychus kankitus (Acarida: Tetranychidae)

Location of life stages on plant parts: Mostly on leaves, but in severe infestations also on fruit; calyx and other cavity on fruit (USDA, 1995, for citrus).

Fruit pathway: Yes, associated with the fruit. It is spread by the wind, rain and animals (USDA, 1995), and was therefore considered likely to transfer.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Polyphagous, incl. *Citrus, Citrus reticulata* (CABI CPC), *Alnus, Celtis sinensis, Alangium chinense, Elaeagnus bockii, Elaeagnus pungens, Litsea auriculata, Eleusine indica, Prunus armeniaca, Pyrus communis, Rosa chinensis, Rosa, Salix, Vitis vinifera* (Migeon and Dorkeld, 2006-2015), *Prunus persica* (USDA, 1995).

Distribution: Asia: China, India, Japan (Migeon and Dorkeld, 2006-2015).

Damage: High infestations may cause leaf, flower and fruit drop, and withering of branches. *E. kankitus* is a pest of *Citrus* sp. in Japan, India and China, and of *C. reticulata* in India (references from 1970s-90s); it is a dominant species for which prevention and control methods are under investigation (2012 reference) (Vacante, 2015). In part of Southern China on Citrus, it is considered very widespread and important (Li et al., 1997).

Other information: The effect of temperature is studied in Li et al (2014).

Recorded impact: High	Intercepted: Not known	Spreading/invasive: Not
(uncertain)		known

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Ehara S. 1965. Two New Species of Eotetranychus from Shikoku, with Notes on E. kankitus Ehara (Acarina: Tetranychidae). Journal of the Faculty of Science Hokkaido University Series V I. Zoology. 15(4), 618-624.
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- Li Y, Wang Z, Zhang G, Liu H. 2014. Effects of different temperatures on the growth and development of Eotetranychus Kankitus(Ehara). Acta Ecologica Sinica, 2014-04.

Migeon A, Dorkeld F. 2006-2015. Spider Mites Web. INRA – CBGP. https://www1.montpellier.inra.fr/CBGP/spmweb/index.php

- USDA. 1995. Importation of Japanese Unshu Orange Fruits (Citrus reticulata Blanco var. unshu Swingle) into Citrus Producing States. Pest Risk Assessment.
- Vacante V. 2015. The Handbook of Mites of Economic Plants: Identification, Bio-Ecology and Control. CABI, 21 déc. 2015 890 pages

Eotetranychus sexmaculatus (Acarida: Tetranychidae)

Location of life stages on plant parts: Mostly on leaves (Steven, 2004; Gonzalez et al., 2010), but in severe infestations also on fruit (USDA, 1995).

Fruit pathway: Yes, associated with the fruit. Assumed to be as E. kankitus, spread by the wind, rain, animals (USDA, 1995), and therefore that it would be likely to transfer (with an uncertainty as this information relates to another species).

Other pathways: plants for planting, cut flowers and branches.

Hosts: Polyphagous incl. *Citrus, Citrus limon, Citrus maxima, Citrus reticulata, Citrus sinensis, Actinidia deliciosa, Diospyros kaki, Azalea, Rhododendron, Hevea brasiliensis, Persea americana, Phaseolus, Ficus, Morus, Psidium guajava, Platanus, Armeniaca mume, Fragaria x ananassa, Malus domestica, Prunus persica, Prunus, Pyracantha, Rosa, Rubus, Populus, Acer, Solanum lycopersicum, Vitis vinifera* (Migeon and Dorkeld, 2006-2015), *Carica papaya* (Gonzalez et al., 2010).

Distribution: Asia: China, India, Japan, Iraq, Korea Rep.; Oceania: Australia, New Zealand; North America: USA, Hawaii; South America: Peru, (Migeon and Dorkeld, 2006-2015). Caribbean: Bermuda (CABI CPC), Cuba (Gonzalez et al., 2010). For USA: Florida (CABI CPC), California (UC IPM, 2007). Present in New Zealand since the early 1950s (Steven, 2004).

Damage: *E. sexmaculatus* feeds on leaves, causing discoloration of tissues and leaf fall (UC IPM, 2007). In New Zealand, it is a serious pest of avocado (Jamieson and Stevens, 2007). It has caused serious problems in avocado orchards since the late 1990s, with leaf drop, and reduced productivity (Steven, 2004). In part of Southern China on Citrus, it is widespread and important (Li et al., 1997). It is mentioned amongst 'major or occasional' pests of Citrus for Central America, Florida and Gulf USA States (Peña et al., 2002).

Other information: Proposed in answer to the EPPO questionnaire on pests of concern for Citrus.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Yes
---------------------------	------------------------	-------------------------

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

González Fernández C, Pérez Artiles L, Beltrán Castillo A, Cabrera Cabrera RI, Borges Soto M, Montes Díaz M, Hernández Espinosa D, Rodríguez Tapia JL. 2010. Insectos, ácaros y nematodos plagas asociados a las plantas cítricas de los viveros y su control. Taller Regional sobre viveris de cítricos 2010.

- Jamieson LE, Stevens PS. 2007. Development Rates, Longevity and Fecundity of Six-Spotted Mite (Eotetranychus sexmaculatus) at Constant Temperatures. New Zealand Plant Protection 60:72-77
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- Migeon A, Dorkeld F. 2006-2015. Spider Mites Web. INRA CBGP. https://www1.montpellier.inra.fr/CBGP/spmweb/index.php
- Peña JE, Sharp JL, Wysoki M. Tropical Fruit Pests and Pollinators: Biology, Economic Importance, Natural Enemies, and Control CABI, 2002 430 pages.
- Steven D. 2004. Control of six-spotted mite, Eotetranychus Sexmaculatus. New Zealand Avocado Growers' Association Annual Research Report 2004. 4:13 - 24.
- UC IPM. 2007. Sixspotted Spider Mite on Plumeria. Pests of Homes, Structures, People, and Pets How to Manage Pests. UC Pest Management Guidelines. University of California Agriculture and Natural Resources
- USDA. 1995. Importation of Japanese Unshu Orange Fruits (Citrus reticulata Blanco var. unshu Swingle) into Citrus Producing States. Pest Risk Assessment.

Tuckerella knorri (Acarida: Tuckerellidae)

Location of life stages on plant parts: Leaves, fruit, branches (Ochoa, 1989).

Fruit pathway: yes.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Polyphagous incl. Citrus (USDA, 2014), Citrus sinensis, Citrus limon, Mangifera indica (Ochoa, 1989), Achras zapota, Carica papaya, Persea americana (Lin, 1982), Cupressus, Platycladus orientalis (CABI CPC), Pandanus odoratissimus (Vacante, 2010), Annona muricata, Camellia assamica, Litchi chinensis (Zhang and Hong, 2010); Mammea americana (Cao and Leal, 2011).

Distribution: Asia: China, Iran, Philippines, Thailand (Vacante, 2010); Central America: Costa Rica (Ochoa, 1989); Caribbean: Cuba (Cao and Leal, 2011). Introduced to Costa Rica and Cuba from presumed origin in Asia (USDA, 2014).

Damage: All records of damage found relate to Costa Rica (where the pest was introduced). *T. knorri* is the most important *Tuckerella* agricultural pest in this country. On *Citrus limon* var. *mesina*, it was found infesting 30-50% of the harvest (fruit) (Ochoa, 1989). In Costa Rica, it is a serious citrus pest requiring control measures and causing significant yield reduction; it is considered as one of the "major pest threats for the California citrus industry" (USDA, 2014, citing others). It occurs in association with *Sphaceloma fawcettii* and may cause significant reduction of yield (Vacante, 2015).

Other information: Reported to be spreading, although uncertainty on damage to hosts (Cao and Leal, 2011).

Recorded impact: High	Intercepted: Not known	Spreading/invasive: Yes

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

Cao J, Leal JL. 2011. Ácaros tuckerélidos (Acari, Tetranychoidea, Tuckerellidae) asociados a Casuarina equisetifolia L. en La Habana. Fitosanidad. vol. 15, no. 2, abril-junio 2011. pp. 69-72.

Lin Y-M. 1982. A new species and two new records of Tuckerella from China (Acari: Tuckerellidae). Acta Entomologica Sinica, 25(4), 448–449 [in Chinese with English abstract].

Ochoa R. 1989. The genus Tuckerella in Costa Rica (Acari: Tuckerellidae). International Journal of Acarology. 15(4), 205-217.

USDA. 2014. Importation of Citrus spp. from China into the continental United States. A Qualitative, Pathway-Initiated Pest Risk Assessment. February 7, 2014.

Vacante V. 2010. Review of the phytophagous mites collected on citrus in the world. Acarologia 50(2): 221–241 (2010) DOI: 10.1051/acarologia/20101969

Vacante V. 2015. The Handbook of Mites of Economic Plants: Identification, Bio-Ecology and Control. CABI, 21 déc. 2015 - 890 pages

Zhang Z, Hong X. 2010. Xin Centenary and Progress in Chinese Acarology: an introduction. Zoosymposia 4: 5–10 (2010)

Insects

Adoxophyes cyrtosema (Lepidoptera: Tortricidae)

Location of life stages on plant parts: Eggs on leaves. Larvae feed on leaves, as well as flowers, buds and fruit (external feeding) (Peña et al., 2002; Liu, 1958; Liu, 1960). Liu (1960), for A. cyrtosema and some other citrus leafrollers in China, notes that ripening fruits are sometimes injured. For lychee and longan, the pest is associated with fruit, flowers, leaves and new growth (Biosecurity Australia, 2003).

Fruit pathway: Yes, as larvae.

Other pathways: plants for planting. Uncertain pathways: cut flowers.

Hosts: Polyphagous, with 27 host plants, including *Citrus, Dimocarpus longan, Litchi chinensis* (Peña et al., 2002), *Arachis hypogaea, Juglans, Clerodendrum, Morus alba, Camellia sinensis* (Brown et al., 2008).

Distribution: Asia: China (Liu, 1958); Oceania: Tonga, New Hybrides (Gilligan et al., 2014), New Guinea (Brown et al., 2008).

Damage: A. cyrtosema is one of the most important insect pests of citrus and lichee in Canton and in eastern Guangdong province (Liu, 1958). In part of Southern China, it is considered as very widespread and important on *Citrus*, and important locally or only in some years on peanut (Li et al., 1997). A. cyrtosema is mentioned as a pest of Citrus in a number of abstracts of publications in Chinese, but details could not be read. Based on the information available, it was considered to have had a high impact on Citrus in the past, with an uncertainty.

Other information: Many references are in Chinese and could not be used.

Recorded impact: High (in the	Intercepted: Not known	Spreading/invasive: Not
past, uncertain)		known

References:

Biosecurity Australia. 2003. Longan and lychee fruit from the People's Republic of China and Thailand. Draft Import Risk Analysis Report. Part B. Australian Government, Department of Agriculture, Fisheries and Forestry.

- Brown JW, Robinson G, Powell JA. 2008. Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). http://www.tortricid.net/foodplants.asp.
- Gilligan TM, Baixeras J, Brown JW, Tuck KR. 2014. T@RT. Online World Catalogue of the Tortricidae. Version 3.0 (December, 2014). http://www.tortricidae.com/catalogue.asp
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- Liu S. 1958. Life history and control of the citrus leaf roller (Adoxophyes cyrtosema Meyr.) in Canton China- Acta Entomologica Sinica, 1958-04.
- Liu S. 1960. Notes on seven species of microlepidoptera injurious to citrus in Kwangtung Province. Acta Entomologica Sinica 1960-03
- Peña JE, Sharp JL, Wysoki M. Tropical Fruit Pests and Pollinators: Biology, Economic Importance, Natural Enemies, and Control CABI, 2002 430 pages.

Archips argyrospilus (Lepidoptera: Tortricidae)

Location of life stages on plant parts: larvae feed on leaves, buds, flowers, young fruit (Government of British Columbia 2015). On *Citrus*, occasionally on newly set or ripening citrus (UC IPM 2013), feeds on young leaves, flowers, newly set fruit and mature fruit (Capinera, 2008).

Fruit pathway: Yes, as larvae.

Other pathways: plants for planting, cut branches.

Hosts: Polyphagous, hosts include *Citrus, Malus domestica, Taxodium distichum* (CABI CPC), *Citrus sinensis, Vitis, Rhododendron, Platanus, Betula papyrifera* (Brown et al., 2008), *Vaccinium* (Retamales and Hancock, 2012), *Pyrus, Prunus, Cydonia, Rubus idaeus, Rubus x loganobaccus, Ribes, Juglans regia, Fraxinus, Acer negundo, Ulmus, Quercus, Populus, Salix, Rosa* (Brunner, 1993).

Distribution: North America: Canada, USA (CABI CPC).

Damage: On *Citrus, A. argyrospilus* is considered a minor pest, but it occasionally causes damage in spring by feeding on newly set fruit or on ripening Valencia and Navel oranges, or grapefruit; it may tie leaves to fruit and bore inside fruit providing entry sites for decay organisms, which may lead to fruit drop (UC IPM, 2013). On various fruit and berry crops (incl. apple, pear etc.), it bores in buds, feeds on petals, flower parts and leaves, webs petals together, rolls and ties leaves together with silk, bores deep irregular holes in small fruit resulting in large russeted scars in mature fruit (Government of British Columbia, 2015). On *Vaccinium*, larvae feed mostly on foliage but sometimes include green fruit in rolled leaves (Retamales and Hancock, 2012; Brunner, 1993).

A. argyrospilus has been a pest of *Citrus* for many years in California (and of apple in other areas of the USA) (Capinera, 2008). It is rare in commercial orchards in Washington, but a serious problem in some British Columbia orchards (Brunner, 1993; Government of British Columbia, 2015). On apple damage levels of 20% were observed in the absence of control methods (Deland, 1992). In the past, heavy damage was reported both in the USA and Canada, with serious outbreaks mostly on Rosaceae (especially apple and pear with 40% fruit losses in some cases), but also *Citrus* and complete defoliation of forest trees (from the end of the 1800s to 1960s) (Paradis, 1964). Serious but sporadic pest in British Columbia apple orchards (Vakenti et al. 1984). *A. argyrospilus* is also important as a contaminant of harvested *Vaccinium* fruit (Retamales and Hancock, 2012).

Other information: Intercepted on fresh Citrus fruit in New Zealand (Biosecurity New Zealand, 2009).

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Not
another crop, in the past)		known

References:

Biosecurity New Zealand. 2009. Import Risk Analysis: Fresh stonefruit from Idaho, Oregon and Washington. Draft for public consultation. MAF Biosecurity New Zealand.

Brown JW, Robinson G, Powell JA. 2008. Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). http://www.tortricid.net/foodplants.asp.

Brunner JF. 1993. Leafrollers - Pandemis leafroller Pandemis pyrusana Kearfott, Obliquebanded leafroller Choristoneura rosaceana (Harris), Fruittree leafroller Archips argyrospilus (Walker), European leafroller Archips rosanus (Linnaeus). Orchard Pest Management Online, Washington State University. http://jenny.tfrec.wsu.edu/opm/displaySpecies.php?pn=48 (accessed August 2015)

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

Capinera JL (ed.). 2008. Encyclopedia of entomology. Springer Netherlands

Deland JP. 1992. Mating disruption of fruit tree leafroller Archips argyrospilus and effects on other leafroller species. MSc thesis. Simon Fraser University. Canada.

Government of British Columbia 2015. Fruit tree and European Leafrollers (Archips argyrospilus, Archips rosanus). URL: http://www.agf.gov.bc.ca/cropprot/tfipm/leafrollers.htm

Paradis RO. 1964. Recherches sur la biologie et la dynamique des populations naturelles d'Archips Argyrospilus (Wlk.)

(Lepidopteres: Tortricidae) dans le sud-ouest du Quebec. PhD thesis. McGill University, Canada.

Retamales JB, Hancock, JF. 2012. Blueberries. CABI, 323 pages.

UC IPM. 2013. Fruit tree Leafroller, Archips argyrospila. Citrus - How to Manage Pests. UC Pest Management Guidelines. University of California Agriculture and Natural Resources. http://www.ipm.ucdavis.edu/PMG/r107301911.html.

Vakenti JM, Campbell CJ, Madsen HF. 1984. A strain of fruittree leafroller, Archips argyrospilus (Lepidoptera: Tortricidae), tolerant to azinphos-methyl in an apple orchard region of the Okanagan Valley of British Columbia. The Canadian Entomologist 116(1): 69-73.

Argyrotaenia sphaleropa (Lepidoptera: Tortricidae)

Location of life stages on plant parts: on Citrus and other hosts, larvae feed on leaves, flowers, buds and externally on fruit (Rocca and Brown, 2013; Botton et al., 2003, SATA, 2012; USDA, 2015). No information was found on the location of pupae, but the pupae of the related species *A. velutina* and *A. citrina* are in leaves or debris on the ground. In a PRA on several *Citrus* species from Peru, USDA (2003) note that A. *sphaleropa* attacks fruit at fruit set, causing premature drop; however, Meneguim and Hohmann (2007) mention damage to newly formed or ripening *Citrus* fruit. It was therefore considered here that the pest may be associated with *Citrus* fruit at harvest, with an uncertainty.

Fruit pathway: Yes, as larvae, with an uncertainty.

Other pathways: plants for planting, soil associated with plants. Uncertain pathways: soil, cut flowers and branches, herbs. **Hosts:** Polyphagous on a wide range of hosts, including *Citrus, Citrus sinensis, Prunus persica, Diospyros kaki, Pyrus* (Meneguim and Hohmann, 2007), *Vaccinium corymbosum* (new host; Rocca and Brown, 2013), *Zea mays, Acacia, Medicago sativa, Chrysanthemum, Pelargonium, Malus sylvestris, Prunus, Vitis vinifera, Rosa, Mentha piperita, Capsicum annuum, Solanum lycopersicum, S. tuberosum* (Trematerra and Brown, 2004).

Distribution: South America: Argentina (Rocca and Brown, 2013); Brazil, Uruguay (Meneguim and Hohmann, 2007). Uncertain records (collection specimen): Colombia (Brown et al., 2008); Bolivia, Peru; Central America: Panama (Trematerra and Brown, 2004).

Damage: External feeding damage on leaves and fruits is recorded for *Citrus* (Meneguim and Hohmann, 2007) and other hosts, such as peach, pear, persimmon (Botton et al., 2003), apple and grapevine (SATA, 2012). Feeding on fruit decreases its value and favours fungal infections (Botton et al., 2003). The pest also causes premature fruit drop (UC IPM, 2013). Damage to Citrus was observed in Brazil, Uruguay and Peru; in Parana, Brazil, occasionnally causes outbreaks, requiring control measures (Meneguim and Hohmann, 2007). *A. sphaleropa* is a major pest in apple orchards and vineyards in Southern Uruguay, and in Brazil also on *Diospyros kaki* (limiting or impairing fruit production; Bentancourt et al., 2003) and pear (Botton et al., 2003). Damage was observed in 85% of sampled persimmon orchards in one region of Brazil (Bavaresco et al., 2005).

Recorded impact: High (on	Intercepted: Not known	Spreading/invasive: Not
another crop)		known

References:

- Bavaresco A, Botton M, Garcia MS, Nondillo A. 2005. Danos e insetos em frutos de caquizeiro em pomares da Serra Gaucha. (In Portuguese.) Agropecuaria Catarinense 18(3): 56-59.
- Bentancourt CM, Scatoni IB, Gonzalez A, Franco J. 2003. Effects of Larval Diet on the Development and Reproduction of Argyrotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae). Neotropical Entomology 32(4):551-557 (2003)
- Botton M, Bavaresco A, Garcia MS. 2003. Ocorrência de Argyrotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae) Danificando Pêssegos na Serra Gaúcha, Rio Grande do Sul. Neotropical Entomology 32(3):503-505.
- Brown JW, Robinson G, Powell JA. 2008. Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). http://www.tortricid.net/foodplants.asp.
- Meneguim AM, Hohmann CL. 2007. Argyrotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae) in Citrus in the State of Paraná, Brazil. Neotropical Entomology 36(2):317-319 (2007)
- Rocca M, Brown JW. 2013. New Host Records for Four Species of Tortricid Moths (Lepidoptera: Tortricidae) on Cultivated Blueberries, Vaccinium corymbosum (Ericaceae), in Argentina. Proceedings of the Entomological Society of Washington 115(2):167-172.
- SATA. 2012. Argyrotaenia sphaeleropa (from Betancourt et al., 2010). SATA. Guia para la proteccion y nutricion vegetal. http://laguiasata.com/joomla/index.php?view=article&catid=68%3Anombres%C2%ADcientifico&id= 610%3Aargyrotaenia%C2%ADsphaleropa&tmpl=component&print=1&la%E2%80%A6
- USDA. 2015. Risk Assessment for the Importation of Fresh Lemon (Citrus limon (L.) Burm. f.) Fruit from Northwest Argentina into the Continental United States. August 3, 2015. Rev: 14. United States Department of Agriculture.
- USDA. 2003. Importation of Fresh Commercial Citrus Fruit: Grapefruit (Citrus x paradisi Macfad.); Lime (C. aurantiifolia [Christm.] Swingle); Mandarin Orange or Tangerine (C. reticulata Blanco); Sweet Orange (C. sinensis [L.] Osbeck); Tangelo (C. x tangelo J.W. Ingram & H.E. Moore); from Peru into the United States. A Pathway-Initiated Plant Pest Risk Analysis. October, 2003
- Trematerra P, Brown JW. 2004. Argentine Argyrotaenia (Lepidoptera: Tortricidae): Synopsis and descriptions of two new species. Zootaxa 574: 1–12.

Biprorulus bibax (Hemiptera: Pentatomidae)

Location of life stages on plant parts: eggs on leaves, fruits or twigs; adults and nymphs feed on fruit (except first nymphal instar), stems and leaves (Schaefer and Panizzi, 2000; Mo, 2006). It feeds on immature and mature fruit (James, 1989).

Fruit pathway: Yes, as eggs, larvae, adults.

Other pathways: plants for planting.

Hosts: *Citrus, Citrus deliciosa, Citrus limon, Citrus reticulata, Citrus x paradisi* (CABI CPC), *Citrus aurantium, Citrus decumana, Citrus limonia, Citrus nobilis, Eremocitrus glauca, Microcitrus australasica* (Cassis and Gross, 2002). *E. glauca* and *C. australasiaca* are native hosts (Schaefer and Panizzi, 2000).

Before the mid-1980, B. bibax was confined to southern Queensland and northern and coastal New South Wales. However, it rapidly extended its geographical range in 1985-1990 to include the major citrus-growing areas in Australia (Schaefer and Panizzi, 2000).

Distribution: Oceania: Australia (New South Wales, Victoria, South Australia) (James, 1990), Asia: Bangladesh (DAE, 2010).

Uncertain record: 'Oceania' is mentioned in DAE (2010) (on pests in Bangladesh) in addition to Australia. No record was found for Oceania other than Australia.

Damage: Minor before the 1980s, *B. bibax* became a major pest of Citrus, causing damage especially to lemon and mandarins, as well as oranges. It is an important pest of Citrus in irrigated inland areas of southeastern Australia. Feeding on immature fruit may cause drop; on mature fruit it causes drying, staining, and gumming of segments; lemon harvested with considerable internal damage may appear undamaged externally; rarely internal damage on mature oranges (Schaefer and Panizzi, 2000). The pest has increased importance and complete crop losses have been observed (James, 1989). An integrated management program for *B. bibax* has been developed and is used widely in the Australian citrus industry (Schaefer and Panizzi, 2000 citing James, 1994). *B. bibax* is mentioned as a major pest of mandarin and sweet orange in Bangladesh (DAE, 2010).

Other information: The pest rapidly extended its range in Australia in 1985-1990 (Schaefer and Panizzi, 2000).

Recorded impact: High (in the	Intercepted: Not known	Spreading/invasive: Yes
past)		

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Cassis G, Gross G. 2002. Hemiptera. Csiro Publishing, 2002 737 pages.
- DAE. 2010. Final report on pest risk analysis (PRA) of citrus & cucurbits of Bangladesh and listing quarantine pests. Department of Agricultural Extension (DAE), Government of the People's Republic of Bangladesh.
- James DG. 1989. Population biology of Biprorulus bibax Breddin (Hemiptera: Pentatomidae) in a Southern New South Wales Citrus Orchard. J. Aust. ent. Soc., 1989, 2 8 279-286 279
- James DG. 1990. Incidence of egg parasitism of Biprorulus bibax Breddin (Hemiptera: Pentatomidae) in southern New South Wales and northern Victoria. General and Applied Entomology 1990 Vol.22 pp.55-60.
- James DG. 1994. The development of suppression tactics for Biprorulus bibax (Heteroptera: Pentatomidae) as Part of an integrated pest management programme in citrus in inland South-eastern Australia. Bulletin of Entomological Research, Volume 84, Issue 1, pp. 31-37

Mo J. 2006. Spined citrus bug. Prime Facts 217. New South Wales Department of Primary Industries.

Schaefer CW, Panizzi AR. 2000. Heteroptera of Economic Importance. CRC Press, 28 juil. 2000 - 856 pages.

Coscinoptycha improbana (Lepidoptera: Carposinidae)

Location of life stages on plant parts: eggs on ripening fruit (also fruit stalk), larvae in fruit, emerge from fruit and pupate close to fallen fruit (rarely in debris, leaf litter, loose soil) (Biosecurity New Zealand, 2008).

Fruit pathway: Yes, as eggs or larvae. Transport of fruit by passengers is one of the pathways suspected for introduction into New Zealand (Biosecurity New Zealand, 2008).

Other pathways: plants for planting. Biosecurity New Zealand (2008) also mentions it may have been transported to New Zealand by wind (although it is not known why this did not occur before).

Hosts: In Australia, native and exotic species from various families, such as *Schizomeria ovata, Citrus, Cassine australis, Psidium, Syzygium.* In New Caledonia, it was found on the endemic shrub *Eugenia hurlimannii* in New Zealand, it was also recorded on *Prunus persica* (Dymock, 2012), *Citrus, Citrus limon, Citrus unshui; Psidium, Acca sellowiana, Macadamia integrifolia, Eriobotrya japonica, Prunus domestica, Prunus persica, Pyrus pyrifolia, Cassine australis, Schizomeria ovata* (Biosecurity New Zealand, 2008).

Distribution: Oceania: Australia (native), New Zealand (first finding in 1997) (Suckling et al 2013), New Caledonia (first record) (Mille et al., 2012). In New Zealand, steadily spreading southwards (NorthernAdvocate, 2015).

Damage: In Australia, *C. improbana* is not a significant pest, and not a pest in commercial crops, but it is known to feed on fruit such as Citrus in home gardens (Biosecurity New Zealand, 2008). It also causes

seasonal damage to ripening guava fruit (USDA, 2015). In New Zealand, it has become a pest of soft fruit in Norfolk Island, affecting commercial peach production, and infests a range of soft fruit and nuts year-round, including citrus, peach, plum, pear and nashi, guava, macadamia and loquat (Dymock, 2012). It is considered as a serious pest of *Macadamia integrifolia* and feijoa (Acca sellowiana); the extent of damage on other commercial crops is not reported (Biosecurity NZ, 2008).

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Yes
(on another crop, uncertain)		

References:

Biosecurity New Zealand. 2008. Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms. Final. Ministry of Agriculture and Forestry, New Zealand.

- Dymock JJ. 2012. Biological control agents for the guava moth, Coscinoptycha improbana. Sustainable Farming Fund Project L11/145. July 2012 (project report).
- Mille C, Munzinger J, Jourdan H. 2012. First record of the Australian guava moth Coscinoptycha improbana Meyrick (Lepidoptera: Carposinidae) in New Caledonia: Implication for quarantine and biosecurity surveys in insular territories. Journal of AsiaPacific Entomology. Volume 15, Issue 2, June 2012, Pages 283–285,
- Northern Advocate. 215. Solar power against pest. Thursday, 12 March 2015.
- http://m.nzherald.co.nz/northern%ADadvocate/rural/news/article.cfm?c_id=1503445&objectid=11416161
- Suckling DM, Dymock JJ, Park KC, Wakelin RH, Jamieson LE. 2013. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length. J Chem Ecol. 2013 Sep;39(9):11618.
- USDA. 2015. Importation of Citrus spp. from Australia (Citrus Production Areas of Inland Queensland; Western Australia; and Bourke and Narromine, New South Wales) into the Continental United States. A Qualitative, Pathway-Initiated Pest Risk Assessment

Cryptothelea variegata (Lepidoptera: Psychidae)

Location of life stages on plant parts: Psychidae are primarily defoliators, but may feed externally on fruit (USDA, 2013).

Fruit pathway: Possibly, as larvae. Because this is based on a statement for Psychidae generally, it is uncertain.

Other pathways: plants for planting.

Hosts: Polyphagous, incl. *Citrus, Mangifera indica, Anacardium occidentale, Camellia sinensis, Casuarina, Cinnamomum, Shorea robusta* (NBAIR, 2016), *Manihot esculenta, Ricinus communis, Albizia, Syzygium aromaticum, Cinchona, Uncaria gambir* (CABI CPC), *Castanea* (as chestnut) (Nasu et al., 2011), *Pinus, Bischofia javanica, Paulownia tomentosa, Acacia nilotica* (FAO, 2007).

Distribution: Asia: India (NBAIR, 2016), China, Indonesia, Malaysia, Vietnam (CABI CPC), Japan (Nasu et al., 2011). CABI CPC also mentions 'South East Asia'.

Damage: In Southern China on Citrus, *C. variegata* is considered as very widespread and important, and minor on coconut, coffee, jackfruit and mango (Li et al., 1997). In India, it is rated as a minor pest (NBAIR, 2016). *C. variegata* can cause damage on citrus and tea, but is much more polyphagous (Sobczyk, no date). In Sumatra, it causes significant defoliation of pines (in natural forests) and damage on crop trees e.g. *Paulownia tomentosa, Acacia nilotica* (FAO, 2007).

Other information: The name Eumeta variegata is used in most publications.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not
(uncertain)		known

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- FAO. 2007. Overview of forest pests Indonesia. Forest Health & Biosecurity Working Papers. Working Paper FBS/19E. FAO, Rome, Italy.
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- Nasu Y, Tachi T, Umezawa T, Nishihama A, Tanaka H. 2011. Outbreak of Eumeta variegata in a chestnut garden in Osaka Prefecture, and the first parasitism record of Pales pavida against E. variegata. Ann. Rept. Kansai Pl. Prot. (53): 91-92 (2011)

- NBAIR. 2016. Eumeta variegata (Snellen). ICAR-National Bureau of Agricultural Insect Resources (India). http://www.nbair.res.in/insectpests/Eumeta-variegata.php.
- Sobczyk. No date. Papua Insects Foundation (Lepidoptera/Psychidae/Eumeta variegata). http://www.papuainsects. nl/insect%20orders/Lepidoptera/Psychidae/Eumeta/Eumeta%20variegata.htm
- USDA. 2013. Importation of Two Fresh Fruit Hybrids of Unshu, Sweet, and Mandarin Oranges, Citrus spp., from Korea into the Continental United States. A Qualitative, Pathway-Initiated Risk Analysis.

Ctenopseustis obliquana (Lepidoptera: Tortricidae)

Location of life stages on plant parts: For Citrus, larvae on leaves and fruit; they may web leaves to fruit, and burrow in the rind of the fruit, occasionally in the flesh, and may cause fruit drop (Hamilton, 1937). On apple, kiwi, grapefruit and plum, the maturing fruit produces corky tissue over the damage; the calyx of various fruit (especially pome fruit) may be invaded by young larvae (Green, 1979). Larvae feed on leaves, buds and fruit on a number of crops (Stevens et al., 1995; Gilligan and Epstein, 2014). This is the case for avocado (Stevens et al., 1995) and apple; on the latter young larvae may also enter the fruit through the calyx (Biosecurity Australia 2006). It is unclear if damage is observed on mature fruit, but the pest is mentioned as being present throughout the year (Hamilton, 1937), and this is not excluded here.

Fruit pathway: Yes.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Highly polyphagous, in more than 20 families (Gilligan and Epstein, 2014), including deciduous and coniferous trees (NZFFA, 2009). Hosts include *Citrus, Diospyros kaki, Ribes, Syzygium smithii, Cyclamen, Rosa, Citrus, Veronica, Camellia japonica* (Gilligan and Epstein, 2014), *Vaccinium corymbosum* (Tomkins and Koller, 1985), *Vitis, Prunus, Malus, Vaccinium* (CABI CPC), *Actinidia, Rubus, Persea americana, Pinus, Eucalyptus, Populus, Salix* (Green and Dugdale, 1982).

Distribution: Oceania: New Zealand (NZFFA, 2009). Reports of introduction into Hawaii are not confirmed (Gilligan and Epstein, 2014).

Damage: *C. obliquana* causes damage by feeding on leaves, buds and fruit, and by webbing leaves to fruits (Gilligan and Epstein, 2014). It is a cause of rejection of fruit at export for *Vaccinium* (Tomkins and Koller, 1985) and avocado (up to 30% of the fruit because of larval damage from unsprayed orchards - Stevens et al., 1995; egg rafts are a quarantine problem on fruit for export - NZ avocado growers association, 2004). On avocado C. obliquana increases fruit drop; on unsprayed trees, up to 70% fruits can have feeding damage (for *C. herana* and *C. obliquana*; NZ avocado growers association, 2004). It is an economically important pest of apple (Shaw et al. 1994), and causes occasional damage in *Pinus radiata* (Brockerhoff et al. 2002). It is considered as a pest of kiwi (controlled; Smith and Graham, 1980). No recent information was found for Citrus. In the past it was considered as a pest of a wide variety of fruit crops, such as pome and stone fruit, kiwi, citrus, grape, feijoa, berry crops (Green, 1979), and causing occasionally considerable damage on Citrus (Hamilton, 1937).

Other information: Intercepted on blueberry (2 interceptions in and on fruit; USDA, 2008). Regulated in the USA for Citrus fruit (USDA fruit and vegetable manual

https://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/fv.pdf).

Recorded impact: Moderate	Intercepted: Yes	Spreading/invasive: Not
(on another crop)		known

References:

Biosecurity Australia. 2006. Final import risk analysis report for apples from New Zealand, Part C. Biosecurity Australia, Canberra, 197 p.

- Brockerhoff, E. G., Jactel, H., Leckie, A. C., and Suckling, D. M. (2002). Species composition and abundance of leafrollers in a Canterbury pine plantation. New Zealand Plant Protection, 85-89.
- Gilligan TM, Epstein M. 2014. Tortricids of Agricultural Importance. Interactive Keys developed in Lucid 3.5. Last updated August 2014. http://idtools.org/id/leps/tortai/index.html
- Green CJ. 1979. Brownheaded leafroller, (Walker), life cycle. N.Z. Dep. Sci. Ind. Res. Inf. Ser.: 105(27):1-3.
- Green CJ, Dugdale JS. 1982. Review of the genus Ctenopseustis Meyrick (Lepidoptera: Tortricidae), with reinstatement of two species, New Zealand Journal of Zoology, 9:4, 427-435, DOI: 10.1080/03014223.1982.10423874.
- Hamilton WM. 1937. A preliminary survey of the citrus industry in New Zealand: the historical, cultural, and economic aspects. Wellington, N.Z.; G.H. Loney, Govt. Print., 1937

NZ Avocado Growers Association. 2004. Growers' manual. New Zealand Avocado Growers' Association.

- NZFFA. 2009. Ctenopseustis obliquana (Walker) and C. herana (Felder & Rogenhofer) (Lepidoptera: Tortricidae). Forest and Timber Insects in New Zealand No. 40. Pests and diseases of forestry in New Zealand. New Zealand Farm Forestry Association. http://www.nzffa.org.nz/
- Shaw PW, Cruickshank VM, Suckling DM. 1994. Geographic changes in leafroller species composition in Nelson orchards. New Zealand journal of Zoology 21(3): 289-294.
- Smith, B. N.; Graham, D. P. F., 1980: Citrus and kiwifruit insect pest control with pirimiphos methyl and permethrin. Proceedings of the thirty third New Zealand weed and pest control conference Willow Park Motor Hotel, Tauranga, August 12th to 14th, 1980: 105-109 (abstract)
- Stevens PS, McKenna CE, Steven D. 1995. management for avocados in New Zealand. Proceedings of The World Avocado Congress III, 1995 pp. 429 – 432.
- Tomkins AR, Koller MS. 1985. A preliminary investigation of highbush blueberry pest and disease control. Proceedings of the 38th NZ weed and pest control conference.
- USDA. 2008. Pathway-Initiated Risk Analysis of the Importation of Vaccinium spp. Fruit from Countries in Central and South America into the Continental United States. February 5, 2008. Revision 003. USDA-APHIS.

Deudorix isocrates (Lepidoptera: Lycaenidae)

Location of life stages on plant parts: on pomegranate, eggs on flower or young fruit, larvae bore into fruit (Zalom et al., 2009); The caterpillars bore into ripening fruits, feed on the seeds (NBAIR, 2016). This seems to also apply to citrus.

Fruit pathway: yes.

Other pathways: plants for planting.

Hosts: *Punica granatum* (Zalom et al., 2009) is the main host. Others include *Citrus, Citrus sinensis, Citrus reticulata, Citrus deliciosa, Emblica officinalis, Psidium guava, Cleistanthus collinus, Sapindus* (CABI CPC and abstracts), *Tamarindus, Manilkara zapota* (NBAIR, 2016).

Distribution: Asia: Bangladesh, India (CABI CPC), Sri Lanka (Bambaradenyia, 2006; Zalom et al., 2009).

Damage: *D. isocrates* causes direct damage to fruit. Affected fruit rot and drop. The holes are often plugged by the anal segment of the caterpillar or its excreta are seen on infested fruits (NBAIR, 2016). This information seems to apply to all fruits mentioned, including citrus, but specific data on impact was found only for pomegranate. *D. isocrates* and *D. epijarbas* are important pests of pomegranate in East Asia, especially in the Indian peninsula; they may cause loss of entire crops unless the flowers are sprayed (Holland et al., 2009). Infestation on pomegranate may cause losses up to 50 % of the fruit (http://agropedia.iitk.ac.in/content/pomegranate-fruit-borer).

Other information: The synonym Virachola isocrates is used in NBAIR (2016) and Bambaradenyia (2006).

Recorded impact: High (on	Intercepted: Not known	Spreading/invasive: Not
another crop, uncertain)		known

References:

Bambaradenyia CNB (editor). 2006. The fauna of Sri Lanka; status of taxonomy, research and conservation. The World Conservation Union, Colombo, Sri Lanka and Government of Sri Lanka.

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

Holland D, Hatib K, Bar-Ya'akov I. Pomegranate: Botany, Horticulture, Breeding. Horticultural Reviews, Volume 35, 127-191. NBAIR. 2016. Virachola isocrates (Fabricius) (=Deudorix isocrates (Fabricius)). ICAR-National Bureau of Agricultural Insect Resources (India). http://www.nbair.res.in/insectpests/Virachola-isocrates.php.

Zalom F, Symmes E, Henderson M, Bell M. 2009. Pomegranate pest – fruit borer. Afghan Agriculture, UC Davis, 2011. http://afghanag.ucdavis.edu/a_horticulture/fruits-trees/pomegranate/pomegranate-factsheets/FS_Insect_Pomegranate_Fruit_Borer.doc/view

Diaprepes abbreviatus (Coleoptera: Curculionidae)

Location of life stages on plant parts: Eggs on leaves, larvae on roots (Weissling et al., 2012). Most references mention that adults feed on leaves (CU Lasallista, 2012; Guerrero et al., 2012; Weissling et al., 2012). However, Grafton-Caldwell et al. (2004) note that on rare occasions, adults feed on fruit (only for Citrus and papaya) and feeding on fruit is also mentioned in UC IPM (2008, which relates to Citrus).

Fruit pathway: Yes, as adults. Because feeding on fruit is occasional and that adults may not remain on fruit at harvest, association with fruit was considered with an uncertainty.

Other pathways: plants for planting, soil. In Florida, presumably introduced with ornamental plants (Weissling et al., 2012). Uncertain pathways: cut flowers and branches (if adults would remain associated with those).

Hosts: Highly polyphagous (Weissling et al., 2012) mentions 270 plant species. Hosts incl. *Citrus sinensis, Citrus, Coffea, Manihot esculenta, Persea americana, Saccharum officinarum, Zea mays, Cajanus cajan* (EPPO GD), vegetables, *Solanum tuberosum, Fragaria* (as strawberry), *Psidium guajava, Carica papaya* (as papaya), *Swietenia* (as mahogany), woody field-grown ornamentals, containerized ornamentals, non-cultivated wild plants (Weissling et al., 2012).

Distribution: North America: USA (California, Florida, Louisiana, Texas); Caribbean: Puerto Rico, Jamaica, Dominican Rep., lower Antilles (Guerrero et al., 2012), Martinique, Guadeloupe (Mauleon and Mademba-Sy, 1988). Native from the Caribbean and introduced to the USA (e.g. Florida, 1964; California, 2006) (Guerrero et al., 2012; UC IPM, 2013).

Damage: Larval feeding on roots causes stunting and death of plants, and consequently yield reduction; adult damage to leaves is minor (CABI CPC; McCoy and Duncan, 2015). The pest also favours entry of fungi into the roots, especially *Phytophthora* (Serrano et al., 2010). *D. abbreviatus* is considered to cause estimated annual losses of \$ 75-100 million USD to Citrus production in the Caribbean and Florida (McCoy and Duncan, 2015). In the Caribbean, it is one of the most economically important pests; in Florida, it causes damage to citrus, ornamental plants, and some other crops and has infested more than 40 000 ha (100 000 acres) of Citrus orchards (Weissling et al 2012) D. abbreviatus has caused serious damage (decline) on Citrus in the French Antilles (Mauleon and Mademba-Sy, 1988).

Other information: Past interceptions in the USA (CABI CPC). Intercepted in California on plants, truck trailers and cargo holds of aircrafts (Grafton-Caldwell et al., 2004).

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Yes	

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

CU Lasallista. 2012. Citricos: cultivo, poscosecha e industrializacion. Caldas: Corporacion Universitaria Lasallista, 2012. 367 p.; il. (Serie Lasallista Investigacion y Ciencia).

- EPPO GD. EPPO Global database. http://gd.eppo.int
- Grafton-Cardwell EE, Godfrey KE, Pena JE, McCoy CW, Luck RF. 2004. Diaprepes root weevil. Publication 8131. University of California, USA.
- Guerrero S, Weeks J, Hodges A, Martin K, Leppla N. 2012. Citrus Pests. Department of Entomology, University of Florida and Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. http://idtools.org/id/citrus/pests (http://idtools.org/id/citrus/pests/factsheet.php?name=Diaprepes+root+weevil)

Mauleon H, Mademba-Šy F. 1988. Un ravageur des agrumes aux Antilles françaises; Diaprepes abbreviatus L. Fruits. vol. 43, n°4. McCov CW, Duncan LW. 2015. IPM: An Emerging Strategy for Diaprepes in Florida Citrus. Univerity of Florida.

http://irrec.ifas.ufl.edu/flcitrus/short_course_and_workshop/diaprepes/IPM.shtml

Serrano, D., Serrano, E., Dewdney, M., and Southwick, C. (2010). Citrus Diseases. USDA/APHIS/PPQ Center for Plant Health Science and Technology.

UC IPM. 2008. Citrus. Invertebrate Damage to Fruit. University of California Agriculture and Natural Resources. http://ipm.ucanr.edu/PMG/C107/m107bpfruitinvert.html

UC IPM. 2013. Diaprepes root weevil (citrus root weevil). Citrus - How to manage pests. University of California Agriculture and Natural Resources. <u>http://www.ipm.ucdavis.edu/PMG/r107305001.html</u>

Weissling TJ, Peña JE, Giblin Davis RM, Knapp JL.diaprepes root weevil - Diaprepes abbreviatus. Featured creatures. UF/IFAS. University of Florida, http://entomology.ifas.ufl.edu/Creatures/citrus/diaprepes_root_weevil.htm.

Dichocrocis punctiferalis (Lepidoptera: Crambidae)

Location of life stages on plant parts: eggs on fruit, larvae bore into fruit (or on maize in ear and stems), adults feed on nectar. The pest overwinters as mature larvae in stems, fruit or under the bark of fruit trees (CABI CPC). Depending on crops, feeding on leaves and shoots is also mentioned (USDA, 2014; NBAIR, 2016).

Fruit pathway: Yes, as eggs or larvae. Although affected fruit are considered unlikely to be harvested or packed in USDA (2014), the pest has been intercepted on fruit (see Other information).

Other pathways: plants for planting.

Hosts: Polyphagous. Hosts incl. *Citrus* (USDA, 2014; Li et al., 1997), *Citrus nobilis* (CABI CPC), *Carica papaya, Curcuma longa, Gossypium; Macadamia ternifolia, Morus alba, Prunus persica, Psidium guajava, Punica granatum, Ricinus communis, Zea mays, Zingiber officinale* (EPPO GD), *Averrhoa carambola, Elettaria cardamomum, Helianthus annuus, Nephelium lappaceum, Sorghum bicolor, Castanea mollissima, Diospyros, Eriobotrya japonica, Ficus carica, Malus domestica, Mangifera indica, Vitis vinifera* (CABI CPC).

Distribution: Asia: China, India, Indonesia, Japan, Korea Dem. Rep., Malaysia, Myanmar, Sri Lanka, Taiwan; Oceania: Australia, Papua New Guinea (EPPO GD). The pest occurs mostly in the subtropics, but it is also recorded from Hokkaido prefecture (north Japan), and northern China (Korycinska 2012).

CABI CPC includes several countries that were not listed when the distribution was studied in EPPO GD, and are therefore considered uncertain: Asia: Brunei Darussalam, Cambodia, Korea Rep., Laos, Philippines, Thailand, Vietnam (originating from one publication).

Doubtful record: Pakistan (interception only; Korycinska 2012).

Absent, intercepted only: UK is recorded in Fauna Europeae (de Jong et al., 2014), but the pest is not present (intercepted only) (Korycinska, 2012).

Damage: On Citrus, larval feeding causes discoloration and splitting of fruit, and fruit drop (USDA, 2014). On castor, larvae bore into shoots and capsules, which are webbed together with dark excreta; on sorghum, larval feeding leads to webbing of grains and broken grains; it sometimes bore into fruits of guava and pomegranate (NBAIR, 2016). In China, it causes serious damage to Chinese chestnut (Zu and Qin 2009), and is one of the most important insect pest on peaches in southern China and an important pest on apples in northern China (CABI CPC). In Southern China on Citrus, it is rated as important locally or only in some years (Li et al., 1997). In North Queensland, it is one of the major pests on *Nephelium lappaceum* (rambutan) and *Durio zibathinus* (durian), and 5% yield loss is also reported in Chinese maize (Korycinska, 2012). Without control measures it is able to destroy 90% of rambutan fruit clusters (Biosecurity New Zealand (2009). There is an uncertainty on the impact; however the information available tends to indicate a high impact on some hosts.

Other information: Intercepted on fruit from several countries in the UK (18 interceptions in 2007-2012, on *Annona squamosa, Mangifera indica, Psidium*) and in the Netherlands (Korycinska, 2012). D. punctiferalis is a very poorly defined species complex, and there is confusion in the literature over the identity of the species studied (Korycinska, 2012). The name *Conogethes punctiferalis* is used in some publications (incl. CABI CPC, Korycinska, 2012).

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Not
another crop, uncertain)		known

References:

Biosecurity New Zealand 2009. Import Risk Analysis: Pears (Pyrus bretschneideri, Pyrus pyrifolia, and Pyrus sp. nr. communis) fresh fruit from China. Ministry of Agriculture and Forestry.

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- de Jong Y. et al. 2014. Fauna Europaea all European animal species on the web. Biodiversity Data Journal 2: e4034. doi: 10.3897/BDJ.2.e4034.
- EPPO GD. EPPO Global database. http://gd.eppo.int
- Korycinska A. 2012. Rapid assessment of the need for a detailed Pest Risk Analysis for Conogethes punctiferalis (Guenée). FERA, UK.
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- NBAIR. 2016. Dichocrocis punctiferalis (Guenée) (=Conogethes punctiferalis (Guenée)). ICAR-National Bureau of Agricultural Insect Resources (India). http://www.nbair.res.in/insectpests/Dichocrocis-punctiferalis.php.

USDA. 2014. Importation of Citrus spp. from China into the continental United States. A Qualitative, Pathway-Initiated Pest Risk Assessment. February 7, 2014.

Zu WF, Qin LZ. 2009. A Review on Dichocrocis puncfiferalis Guenee [J]. Journal of Hebei Agricultural Sciences, 1, 007.

Egira curialis (Lepidoptera: Noctuidae)

Location of life stages on plant parts: eggs on leaves; larvae on leaves, flowers, fruit (UC IPM, 2013, Grafton-Cardwell et al., 2001). Although UC IPM (2013) mentions that maturing fruit is rarely attacked, Grafton-Cardwell et al. (2001) states that larvae also bore into mature fruits. Larvae drop to the ground if disturbed. No information was found on the location of pupae.

Fruit pathway: Yes.

Other pathways: Plants for planting, cut branches.

Hosts: Polyphagous, hosts incl. *Citrus* (UC IPM, 2013) and a wide range of deciduous trees such as *Quercus, Prunus, Purshia tridentata, Celtis reticulata* (PNW Moths, no date).

Distribution: North America: USA, Canada (PNW Moths, no date – British Columbia to California, East to Colorado and New Mexico).

Damage: on Citrus, *E. curialis* may cause economic damage by feeding on fruit. Damage can be substantial as it feeds on young fruit, and as larvae move around while feeding, attacking numerous leaves, blossoms and fruit (UC IPM, 2013). *E. curialis* has been an important economic pest of citrus in the San Joaquin Valley of California since the 1930s (Grafton-Cardwell et al., 2001). Natural enemies and current control measures are reported to reduce populations to an acceptable level (UC IPM, 2013).

Other information: Natural enemies and current control measures reduce populations (UC IPM, 2013).

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not known
---------------------------	------------------------	--------------------------------------

References:

Grafton-Cardwell EE, Montez GH, McClain JE. 2001. Lower Developmental Threshold and Degree-Day Prediction of Larval Emergence of Citrus Cutworm, Egira curialis (Grote) (Lepidoptera: Noctuidae). J. Agric. Urban Entomol. Vol. 18, No.2 PNW Moths. no date. Egira curialis. Pacific Northwest Moths

http://pnwmoths.biol.wwu.edu/browse/familynoctuidae/subfamilynoctuinae/tribeorthosiini/egira/egiracurialis/ UC IPM. 2013. Citrus Cutworm - Egira (Xylomyges) curialis. Citrus - How to Manage Pests. UC Pest Management Guidelines. University of California Agriculture and Natural Resources. http://www.ipm.ucdavis.edu/PMG/r107302011.html

Erthesina fullo (Hemiptera: Pentatomidae)

Location of life stages on plant parts: Feed on stems, leaves or fruits (MPI, 2014).

Fruit pathway: Yes. However, it is also known as a hitchhiker, and may infest fruit consignments in this manner.

Other pathways: known hitchhiker (in containers, or amongst general cargo and used machinery and vehicles) (MPI, 2014). Timber, leaves (Padil, no date).

Hosts: According to MPI (2014), there is limited information on the host range of *E. fullo*, but it is known to feed on various plants. Hosts include *Citrus* (Li et al., 1997), *Mangifera indica, Diospyros kaki, Cinnamomum camphora, Hibiscus rosa-sinensis, Eucalyptus, Psidium guajava, Averrhoa carambola, Zea mays, Punica granatum, Ziziphus jujube, Prunus armeniaca, Prunus persica, Prunus pseudocerasus, Prunus salicina, Pyrus bretschneideri, Pyrus calleryana, Salix, Ailanthus altissima* (Rider, 2015). *Tectona grandis,*

salicina, Pyrus bretschneideri, Pyrus calleryana, Salix, Ailanthus altissima (Rider, 2015). Tectona Melia azeradach, Populus (CABI CPC).

Distribution: Asia: China, Japan, Myanmar, Sri Lanka, India, Pakistan, Bangladesh (Ahmad et al., 2004), Taiwan, Vietnam (Padil, no date).

Damage: In Southern China on Citrus, *E. fullo* is widespread and important (Li et al., 1997). On jujube, fruit loss is caused by fruit drop (Song and Wang, 1993). It is recorded as a major pest of pine trees and hardwood trees in Taiwan, of pear in China, and of *Cinnamomum cassia* in Vietnam (Padil, no date). It has an impact on timber trees and horticultural crops (MPI, 2014).

Other information: Intercepted in consignments in New Zealand, and one individual found in 2014; considered absent (MPI, 2014).

Recorded impact: Moderate	Intercepted: Yes	Spreading/invasive: Not
(uncertain)		known
Ahmad I, Memon N, Kamaludin S. 2004. A Revision of Hayline Stink Bug Genus Erthesina Spinola (Hemiptera: Pentatomidae: Pentatominae) and Their Clasdistics. Pakistan J. Zool., vol. 36(4), pp. 285-293, 2004.

- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- MPI. 2014. Yellow spotted stink bug Erthesina fullo. Data sheet. Ministry for primary industries, New Zealand. http://www.biosecurity.govt.nz/pests/yellowspottedstinkbug
- PaDIL. no date. Yellowspotted stink bug Erthesina fullo (Thunberg) (Hemiptera: Pentatomidae). http://www.padil.gov.au/pestsanddiseases/pest/commodity%20typepestsanddiseases/136074
- Rider DA. 2015. Plant Host Records. Pentatomidae: Pentatominae. North Dakota State University. https://www.ndsu.edu/pubweb/~rider/Pentatomoidea/Hosts/plant_Pent_Pentatominae.htm
- Song HW, Wang CM. 1993. Damage by Halyomorpha halys (Stal) and Erthesina fullo (Thunberg) to jujube trees and their control. Entomological Knowledge 1993 30 4 225-228

Leptoglossus zonatus (Hemiptera: Coreidae)

Location of life stages on plant parts: Eggs on leaves and stems. Nymphs and adults feed on leaves, flowers, fruit and seeds, and are mobile (Chi and Mizell, 2012; Buss et al., 2011). On Citrus, ripening fruit may be attacked by adults (for four Leptoglossus species; Guerrero et al., 2012).

Fruit pathway: Yes, as adults, possibly nymphs.

Other pathways: plants for planting.

Hosts: Polyphagous. *Solanum lycopersicum* is a preferred host, as well as *Jatropha curcas*. Other hosts mentioned are *Satsuma mandarin* (feeding host, it is unclear if it can complete its life cycle on this plant), also *Zea mays, Gossypium, Solanum melongena, Prunus persica, Carya illinoinensis, Punica granatum, Citrullus lanatus* (Chi and Mizell, 2012), *Citrus aurantiifolia, Citrus sinensis, Cucumis melo, Cucurbita, Persea americana, Psidium guajava, Sorghum bicolor* (CABI CPC), *Cyphomandra betacea* (Arnal et al., 2005).

Distribution: North America: Mexico (Tepole-Garcia et al., 2012; Tarango-Rivero and Gonzalez Hernández, 2009), USA (south and west, incl. Alabama, Arizona, California, Florida, Louisiana, Texas) (Chi and Mizell, 2012; Xiao and Fadamiro, 2010); Central America: through Mexico and Central America (incl. Nicaragua, Honduras) into the northern half of South America (Chi and Mizell, 2012; Xiao and Fadamiro, 2010), El Salvador (Gonzalez-Chavez, 2002). South America: Brazil (De Oliveira et al., 2004), Venezuela (PAV, 2013), Colombia (Duarte Sanchez, 2006).

In addition: Coreoidae Species File (2016), citing Packauskas (2010) (not available to the assessor) mentions Argentina, Bolivia, Costa Rica, Ecuador, Guatemala, Panama, Peru (a quick search did not allow to find specific records for these countries). "Caribbean" is indicated in King and Saunders (1984), but no specific record was found.

L. zonatus has spread at least within the USA (for example first recorded in Florida in 2005 – Buss et al., 2011).

Damage: Feeding causes deformations, spots, aborted fruit, malformed seeds (Buss et al., 2011). Feeding on fruit and seeds affects the quality and cause yield reduction (Marchiori, 2002). In the USA, *L. zonatus* has become a major pest of Citrus, especially *Satsuma mandarin*, and is considered an emerging pest on various other of crops such as maize, cotton, eggplant, peach, pecan, pomegranate, tomato, watermelon (Xiao and Fadamiro 2011; Chi and Mizell, 2012). In South America, it is a pest of various crops, and also a vector of plant trypanosomatids (de Oliveira et al., 2004). On maize in Brazil, losses of 15% were registered (Marchiori, 2002). In Colombia, damage is caused to Citrus (Duarte Chavez, 2002). In Central America (King and Saunders, 1984), it is a minor pest that can be serious on tomato. Schaefer and Panizzi (2000) mention damage on many crops, including cotton, tomato, citrus, avocado, cucurbits, sorghum, eggplant, pomegranate, passionfruit, maize, soybean.

Other information: The synonym *Veneza zonata* is used in some publications (e.g. Coreoidae Species File, 2016). CABI CPC contains separate entries for *Veneza zonata* and *Leptoglossus zonatus*; however, they are synonyms according to others.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Yes	
---------------------------	------------------------	-------------------------	--

- Arnal E, Ramos F, Aponte A, Suárez ZH, Cermeli M, Rojas T. 2005. Reconocimiento de insectos y enemigos naturales asociados al tomate de árbol en Aragua y Miranda, Venezuela CENIAP HOY, Revista Digital del Centro Nacional de Investigaciones Agropecuarias de Venezuela, Número 9 septiembre-diciembre 2005
- Buss LJ, Halbert SE, Johnson SJ. 2011. Leptoglossus zonatus-A new leaf-footed bug in Florida (Hemiptera: Coreidae). Pest Alert, Florida Department of Agriculture and Consumer Service, Division of Plant Industry, Gainseville. http://www.freshfromflorida.com/Divisions-Offices/Plant-Industry/Plant-Industry-Publications/Pest-Alerts/Pest-Alerts-Leptoglossus-Zonatus-A-New-Leaffooted-Bug-In-Florida
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Chi AA, Mizell RF III. 2012. Leptoglossus zonatus. Featured creatures. University of Florida.
 - http://entnemdept.ufl.edu/creatures/citrus/leptoglossus_zonatus.htm
- CoreoideaSF Team. 2016. Coreoidea Species File Online. Version 5.0/5.0. http://Coreoidea.SpeciesFile.org
- de Oliveira D, de Souza Tde A, Murate LS, Jankevicius JV, Gaziri LC, Jankevicius SI. 2004. Protease and phospholipase inhibition protect Veneza zonata (Hemiptera Coreidae) against septicemia caused by parasite trypanosomatid 563DT. J Invertebr Pathol. 2004 Jan;85(1):9-17.
- Duarte Sanchez IR. 2006. Biologia, parasitoides y danos de Leptoglossus zonatus y Leptoglossus gonagra (Heteroptera: Coreidae) en cultivos de Citrus spp. Thesis. Universitad industrial de Santander.
- Gonzalez-Chavez MO. 2002. Informe De Consultorõa Sobre:Diagnostico De Las Especies Invasoras De Fauna Invertebrada Y Sus Efectos Sobre Ecosistemas En El Salvador. Ministerio De Medio Ambiente Y Recursos Naturales.
- Guerrero S, Weeks J, Hodges A, Martin K, Leppla N. 2012. Citrus Pests. Department of Entomology, University of Florida and Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. http://idtools.org/id/citrus/pests (http://idtools.org/id/citrus/pests/factsheet.php?name=Leaf-footed+bug)
- King ABS and Saunders JL. 1984. The invertebrate pests of annual food crops in Central America. Overseas Development Administration, London.
- Marchiori CH. 2002. Natural enemies of Leptoglossus zonatus (Dallas, 1852) (Hemiptera: Coreidae) on maize in Itumbiara, Goias. Instituto Luterano de Ensino Superior de Itumbiara. (ILES). Biotemas 15: 69-74.
- PAV. 2013. Plagas agricolas de Venezuela. Sociedad Venezolana de Entomología (SVE) and Museo del Instituto de Zoología Agrícola "Francisco Fernández Yépez" (MIZA). http://plagas.miza-ucv.org.ve/ (Accessed January 2014)
- Schaefer CW, Panizzi AR. 2000. Heteroptera of Economic Importance. CRC Press, 28 juil. 2000 856 pages.
- Tarango Rivero SH, González Hernández A. 2009. Especies, Fluctuación Poblacional y Enemigos Naturales de Chinches (Hemíptera: Pentatomidae, Coreidae, Largidae) Asociadas a Nogal Pecanero. Southwestern Entomologist 34(3):305-318. 2009.
- Tepole-Garcia RE, Pineda-Guillermo S, Martinez-Herrera J, Castrejon-Gomez VR. 2012. Records of Two Pest Species, Leptoglossus zonatus (Heteroptera: Coreidae) and Pachycoris klugii (Heteroptera: Scutelleridae), Feeding on the Physic Nut, Jatropha Curcas, in Mexico. Florida Entomologist (95)1: 208-2010
- Xiao YF, Fadamiro HY. 2010. Evaluation of damage to satsuma mandarin (Citrus unshiu) by the leaffooted bug, Leptoglossus zonatus (Hemiptera: Coreidae). J. Appl. Entomol. 134 (2010) 694–703.

Lobiopa insularis (Coleoptera: Nitidulidae)

Location of life stages on plant parts: Eggs are laid in ripe fruit, in cavities created by feeding (for strawberry; Agrolink Br, no date). Hernandez Torres (2013) mentions rotten fruit, but it seems to also attack healthy fruit (at least strawberries). Considered associated with lemon fruit in USDA (2015).

Fruit pathway: Yes, with an uncertainty (whether it is associated with healthy citrus fruit).

Other pathways: plants for planting carrying fruit.

Hosts: Citrus limon (USDA, 2015), Citrus sinensis (Lima and Davies, 1981), Fragaria (as strawberry), Psidium guajava, Mangifera (as mango) (Agrolink Br, nd), Prunus persica (Hernandez-Torres, 2013).

Distribution: South America: Argentina (USDA, 2015), Brazil (Fornari et al., 2013), Colombia, (Hernandez-Torres, 2013); Central America (Peck, 2006, Hernandez Torres 2013); Caribbean: Grenada, St. Kitts and Nevis (CABI CPC), Cuba, Dominica, Grenada, Guadeloupe, Puerto Rico, St. Thomas, St. Vincent (Peck, 2006), West Indies (Hernandez Torres, 2013); North America: Mexico, USA (Georgia, Florida, Alabama, Texas) (Hernandez Torres 2013). Introduced to the Canary Islands (Lason and Przewozny, 2009), so it was considered that it can be spread by trade.

Damage: *L. insularis* is considered an important pests of strawberry in Brazil (Fornari et al., 2013; Bortoli et al., 2012), with damage reaching 20% (Agrolink, nd). No data were found for Citrus and other hosts.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Yes	
(on another crop)			

AgrolinkBr. no date. Broca do morango (Lobiopa insularis).

- https://www.agrolink.com.br/agricultura/problemas/busca/brocadomorango_3131.html
- Bortoli LC, Machota Junior R, Botton M. 2012. Biologia da broca-do-morangueiro Lobiopa insularis (Castelnau, 1840) (Coleoptera: Nitidulidae) em laboratório
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Fornari RA; Machota Junior R; Bernardi D; Botton M; Pastori PL. 2013. Evaluation of damage, food attractants and population dynamics of strawberry sap beetle. Horticultura Brasileira 31: 380-385.
- Hernandez Torres H. 2013. Escarabajos de la savia (Coleoptera; Nitidulidae) de Coahuila, Mexico. MSc Thesis. Universidad Autonoma Agraria Antonio Narro.
- Lason A, Przewozny M. 2009. Lobiopa insularis (Castelnau, 1840) (Coleoptera: Nitidulidae: Nitidulinae) an introduced beetle species new for the Palaearctic fauna.Polish Journal of Entomology 2009 Vol. 78 No. 4 pp. 347-350
- Lima JEO, Davies FS. 1981. Fruit set and drop of Florida navel oranges. Proc. Fla. State Hort. Soc. 94:11-14. 1981.
- Peck SB. 2006. The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution. Insecta Mundi, Vol. 20, No. 3-4, September-December, 2006 165-209.
- USDA. 2015. Risk Assessment for the Importation of Fresh Lemon (Citrus limon (L.) Burm. f.) Fruit from Northwest Argentina into the Continental United States.

Neosilba zadolicha (Diptera: Lonchaeidae)

Location of life stages on plant parts: larvae in fruit (Uchôa-Fernandes et al., 2002). The location of eggs is unknown (inside or on fruit, or other plant parts) (Uchôa, 2012).

Fruit pathway: yes, at least as larvae.

Other pathways: plants for planting with fruit.

Hosts: Polyphagous, hosts include *Citrus reticulata* (Lopes et al., 2008), *Citrus jambhiri, Terminalia catappa, Strychnos pseudoquina, Byrsonima orbignyana, Inga laurina, Ficus insipida, Syzygium jambos, Psidium kennedyanum, Ximenia americana, Passiflora aleyronea, Passiflora edulis, Alibertia edulis, Genipa americana, Pouteria glomerata, Pouteria ramiflora, Pouteria torta, Physalis angulata, Psittacanthus acinarius,* (Uchôa, 2012), *Prunus persica* (Montes et al., 2010), *Byrsonima crassifolia, Annona crassiflora, Annona muricata, Psidium guajava, Metrodorea flavida, Citrus sinensis, Artocarpus communis, Pouteria macrophylla, Solanum gilo, Capsicum* (Strikis et al., 2011).

Distribution: South America: Brazil (Adaime et al., 2012), Colombia (Galeano-Olaya and Canal, 2012).

Damage: *N. zadolicha* is reported among the species of *Neosilba* of importance in South America (Riquelme, 2012). In Mato Grosso do Sul (Brazil), the number of adults of *Neosilba* reared from Citrus fruits in sites surveyed was much higher than that of *Anastrepha* and *Ceratitis capitata*, suggesting economic importance of *Neosilba* as a primary pest in citrus fruits (Uchoa-Fernadez et al 2002); among those, *N. zadolicha* was identified to species level (Uchoa-Fernadez et al, 2003). *N. zadolicha* is also an occasional pest of *Byrsonima crassifolia* (tropical fruit) (Adaime et al., 2012). *N. zadolicha* is the frugivorous pest with the highest economic impact to tangerines in Matinhas, Brazil (above *C. capitata*). It does not make deep punctures in fruit as *C. capitata*, and if they do, these are not visible to the 'naked eye' (Lopes et al., 2008).

Other information: A number of *Neosilba* species were identified during this screening, such as *N. batesi*, *N. glaberrima*, *N. inesperata*, and *N. pendula*. They were thought to be secondary pests, attacking fruit damaged by other pests, although some species of *Neosilba* originally thought to be secondary have been shown to be primary pests. In Sao Paulo, Brazil, *Neosilba* spp. were collected on *C. sinensis*, *C. aurantium*, *C. reticulata*, 'Murcott' tangor, *Fortunella* sp., and *C. limonia* (Raga et al., 2004), and *Neosilba* was shown as primary invaders on citrus (Raga et al., 2004, Souza-Filho et al., 2009). Only for *N. zadolicha* was there evidence of impact as a primary pest that led to its addition to this Alert List. Information is lacking on other species, although they are considered as a possible emerging threat. The identification of *Neosilba* appears to be complex, and they seem to be identified mostly to genus level in most of the studies found. Many new species were described only recently, including some with still unknown hosts; a key to 40 species is given in Galeano-Olaya and Canal, 2012).

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not
(uncertain)		known

- Adaime R, Strikis PC, De Souza-Filho MF, Lima CR, Lasa R. 2012. First report of Lonchaeidae (Diptera) infesting fruits of Byrsonima crassifolia in Brazil. Revista Colombiana de Entomología 38 (2): 363-364.
- Galeano-Olaya PE, Canal NA. 2012. New species of Neosilba McAlpine (Diptera: Lonchaeidae) and new records from Colombia. Papeis Avulsos de Zoologia. Volume 52(31):361-385, 2012.
- Lopes EB, Batista de Luna J, Cavalcanti de Albuquerque I, Henrique de Brito C. 2008. Moscas frugívoras (Tephritidae e Lonchaeidae): ocorrência em pomares comerciais de tangerina (Citrus reticulata Blanco) do município de Matinhas, Estado da Paraíba. Acta Sci. Agron. Maringá, v. 30, supl., p. 639-644, 2008
- Montes SNMN, Raga A, Boliani AC, Strikis PC, Dos Santos PC. 2010. Infestación natural de Lonchaeidae (Diptera) en variedades de melocotón. Revista Colombiana de Entomología 36 (2): 223-228 (2010)
- Raga A, Prestesi DAO, Souza Filho MF, Sato ME, Siloto RC, Guimaraes JA, Zucchi RA. 2004. Fruit Fly (Diptera: Tephritoidea) Infestation in Citrus in the State of São Paulo, Brazil. Neotropical Entomology 33(1):085-089 (2004)
- Riquelme CPI. 2012. Lonchaeidae (Diptera; Tephritoidea) associados al genero Annona. MSc thesis. Montecillo, Mexico.
- Souza-Filho MF, Raga A, Azevedo-Filho JA, Strikis PC, Guimarães JA, Zucchi RA. Diversidade e variação sazonal de moscas-dasfrutas (Diptera: Tephritidae, Lonchaeidae) e seus parasitóides (Hymenoptera: Braconidae, Figitidae) em pomares de goiaba, nêspera e pêssego. Braz. J. Biol., 69(1): 31-40, 2009
- Strikis, PC, da Glória de Deus E, Adaime da Silva R, Braga Pereira JD, Ramos de Jesus C, Marsaro Júnior AL. 2011. Conhecimento sobre Lonchaeidae na Amazônia brasileira. Chapter 13 In Moscas-das-frutas na Amazônia brasileira: diversidade, hospedeiros e inimigos naturais, pp205-215.
- Uchôa MA. 2012. Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control, Integrated Pest Management and Pest Control - Current and Future Tactics, Dr. Sonia Soloneski (Ed.), ISBN: 978-953-51-0050-8, InTech.
- Uchoa-Fernandes MA, De Oliveira I, Molina RMS, Zucchi RA. 2002. Species Diversity of Frugivorous Flies (Diptera: Tephritoidea) from Hosts in the Cerrado of the State of Mato Grosso do Sul, Brazil. Neotropical Entomology 31(4):515-524
- Uchoa-Fernandes MA, De Oliveira I, Molina RMS, Zucchi RA. 2003.Biodiversity of Frugivorous Flies (Diptera: Tephritoidea) Captured in Citrus Groves, Mato Grosso do Sul, Brazil. Neotropical Entomology 32(2):239-246 (2003)

Nipaecoccus viridis (Hemiptera: Pseudococcidae)

Location of life stages on plant parts: often hidden, e.g. under sepals of citrus fruits, and can easily be transported on exported plant commodities (CABI CPC).

Fruit pathway: yes, not mobile.

Other pathways: plants for planting.

Hosts: Highly polyphagous, hosts incl. *Citrus* (incl. *aurantium, reticulata*), *Mangifera indica, Asparagus, Chrysanthemum, Carica papaya, Cucumis, Pyrus communis, Rosa, Solanum, Vitis, Persea americana, Gossypium, Coffea* (Garcia Morales et al., 2016).

Distribution: Africa: Algeria, Angola, Benin, Burkina Faso, Comoros, Cote d'Ivoire, Egypt, Eritrea, Kenya, Madagascar, Malawi, Mali, Mauritius, Niger, Nigeria, Senegal, Seychelles, South Africa, Sudan, Tanzania, Togo, Uganda, Zimbabwe; Caribbean: Bahamas; North America: Mexico, USA; Asia: Afghanistan, Bangladesh, Cambodia, China, India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Malaysia, Nepal, Oman, Pakistan, Philippines, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Vietnam; Oceania: Australia, Guam, Kiribati, New Caledonia, Northern Mariana Islands, Papua New Guinea, Solomon Islands, Tuvalu (EPPO GD). Found in Florida for the first time in 2009 (Stocks and Hodges, 2010).

Damage: On citrus, feeding on twigs causes deformation. The pest may stunt trees, produces honeydew, and on fruit may cause deformation, discoloration and drop. In India, 5% damage was observed in two vineyards in Bangalore. In Hawaii, it was long considered the most destructive mealybug. On Citrus, losses are mostly due to fruit drop (which may reach 50% for Navel oranges in South Africa) and quality issues due to fruit deformation (CABI CPC citing references from the 1970s). In Southern China on Citrus, it is considered as very widespread and important (Li et al., 1997). It is an agricultural pest in Asia, attacking food, forage, ornamental and fiber crops, and a pest of stored potatoes. It often causes considerable damage (Stocks and Hodges, 2010).

Other information: Intercepted in the USA including on Citrus fruit (Evans and Dooley, 2013; USDA, 2015), and in the Korea Rep. on Citrus (commodity not mentioned) (Suh et al., 2013).

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Not
(uncertain)		known

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- EPPO GD. EPPO Global database. http://gd.eppo.int
- Evans GA, Dooley JW. 2013. Potential Invasive Species of Scale Insects for the USA and Caribbean Basin. Chapter 18 In Potential Invasive Pests of Agricultural Crops (ed. J. Peña). CAB International
- García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database. doi: 10.1093/database/bav118. http://scalenet.info.
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- Stocks IC, Hodges G. 2010. Nipaecoccus viridis (Newstead), a New Exotic Mealybug in South Florida (Coccoidea: Pseudococcidae). Pest Alert. Florida Department of Agriculture and Consumer Services, Division of Plant Industry
- Suh SJ, Yu HM, Hong K-J. 2013. List of Intercepted Scale Insects at Korean Ports of Entry and Potential Invasive Species of Scale Insects to Korea (Hemiptera: Coccoidea). Korean J. Appl. Entomol. 52(2): 141-160 (2013)
- USDA. 2015. Importation of Citrus spp. from Australia (Citrus Production Areas of Inland Queensland; Western Australia; and Bourke and Narromine, New South Wales) into the Continental United States. Version 4.

Paracoccus burnerae (Hemiptera: Pseudococcidae)

Location of life stages on plant parts: branches, leaves, fruit (Johnson, 2010).

Fruit pathway: yes, not mobile.

Other pathways: plants for planting, cut plant part (e.g. asparagus). Uncertain pathways: cut flowers.

Hosts: Polyphagous, incl. *Citrus sinensis* (CABI CPC), *Citrus aurantium, Nerium oleander, Asparagus, Gossypium, Hibiscus, Musa ensete, Psidium guajava, Olea europaea, Passiflora edulis, Coffea arabica, Polysphaeria multiflora, Solanum tuberosum* (Garcia Morales et al., 2016).

Distribution: Africa: Angola, Ascension Island, Comoros, Kenya, Namibia, Reunion, Saint Helena, Seychelles, South Africa, Zambia, Zimbabwe; Asia: India, Iran (Garcia Morales et al., 2016), Yemen (Marotta et al., 2001). The pest has spread within Africa (Johnson, 2010). Absent, intercepted only: UK; CABI CPC mentions the UK (unconfirmed record from datamining); however, the abstract concerned mentions interception of *P. burnerae* on oranges from South Africa (Malumphy, 1993). The pest is considered absent from the EU.

Damage: Data on impact was found for South Africa. *P. burnerae* is mentioned amongst the three most important citrus mealybug in South Africa (Garcia Morales et al., 2016, citing others Hattingh, 1993; Johnson & Giliomee, 2010). It became more prevalent during the early 1990s, and is outcompeting Planococcus citri in some parts of South Africa (Johnson, 2010). It is a serious pest of citrus, but is also a quarantine pest for citrus fruit imported from South Africa, affecting exports of Citrus fruits (Johnson and Gillomee, 2012; Acton, 2013).

Other information: *P. burnerae* is a vector of banana streak virus (Muturi et al., 2013). It has been intercepted in France on Citrus fruits (Plant Health Laboratory LSV, ANSES, France), in the UK on oranges (Malumphy, 1993). It has also been intercepted in the USA from several countries, mostly on *Citrus*, also *Nephelium* and *Pyrus* (Miller et al., 2014; Evans and Dooley, 2013). Proposed in answer to the EPPO questionnaire on pests of concern for Citrus.

Recorded impact: High (also	Intercepted: Yes	Spreading/invasive: Yes
vector)		

References:

Acton QA (ed). 2013. University of Stellenbosch Mattieland. Seasonal phenology and natural enemies of the oleander mealybug, Paracoccus burnerae (Brain) (Hemiptera; Pseudococcidae), in South Africa. In; Issues in Life Sciences—Acarology, Arachnology, and Entomology: 2013 Edition. ScholarlyEditions, 1 mai 2013 - 1189 pages

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Evans GA, Dooley JW. 2013. Potential Invasive Species of Scale Insects for the USA and Caribbean Basin. Chapter 18 In Potential Invasive Pests of Agricultural Crops (ed. J. Peña). CAB International
- García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database. doi: 10.1093/database/bav118. http://scalenet.info.
- Johnson T, Giliomee JH. 2012. Seasonal phenology and natural enemies of the oleander mealybug, Paracoccus burnerae (Brain) (Hemiptera: Pseudococcidae), in South Africa. African Entomology; 2012. 20(1):17.

Johnson T. 2010. Biology of the Oleander Mealybug, Paracoccus Burnerae (Brain) (Hemiptera: Pseudococcidae). MSc thesis. University of Stellenbosch, South Africa.

- Malumphy C. 2003. First interceptions of Paracoccus burnerae (Brain) (Homoptera: Pseudococcidae) in Britain. Entomologist's Gazette; 1993. 44(4):303-305. (abstract).
- Marotta S, Harten A van, Mahyoub MA. 2001. Mealybugs found on agricultural crops in Yemen. Proceedings of the ISSIS IX International Symposium on Scale Insect Studies, Padua, Italy, 28 September 2001. Bollettino di Zoologia Agraria e di Bachicoltura; 2001. 33(3):233-238. (abstract)
- Miller D, Rung A, Parikh G, Venable G, Redford AJ, Evans GA, Gill RJ. 2014. *Scale Insects, Edition* 2. USDA APHIS Identification Technology Program (ITP). Fort Collins, CO. http://idtools.org/id/scales/factsheet.php?name=7037
- Muturi SM, Wachira FN, Karanja LS, Wambulwa MC, Macharia E. 2013. Paracoccus burnerae (Homoptera; Planococcidae) as a vector of Banana streak virus. Journal of Experimental Biology and Agricultural Sciences, November 2013; Volume 1(5).

Paracoccus marginatus (Hemiptera: Pseudococcidae)

Location of life stages on plant parts: Feeds on leaves, fruit and stem (Walker et al., 2006).

Fruit pathway: yes, not mobile.

Other pathways: plants for planting, cut flowers.

Hosts: Highly polyphagous with more than 55 host plants in over 25 genera, including *Citrus, Carica papaya, Hibiscus, Persea americana, Gossypium, Solanum lycopersicon, Solanum melongena, Capsicum, Phaseolus, Pisum, Mangifera indica, Prunus* (as cherry), *Punica granatum* (Walker et al., 2006), *Annona squamosa, Coffea, Gardenia, Jatropha curcas, Manihot esculenta, Plumeria, Citrus sinensis, Dahlia pinnata, Rosa* (CABI CPC).

Distribution: Asia: Bangladesh, Cambodia, India, Indonesia, Malaysia, Maldives, Oman, Philippines, Sri Lanka, Taiwan, Thailand; Africa: Benin, Ghana, Mauritius, Réunion, Tanzania, Togo; North America: Mexico, USA (Florida, Hawaii); Caribbean; Antigua and Barbuda, Bahamas, Barbados, British Virgin Islands, Cayman Islands, Cuba, Dominican Rep., French West Indies, Grenada, Guadeloupe, Haiti, Montserrat, Netherlands Antilles, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Sint Maarten, US Virgin Islands; Central America: Belize, Costa Rica, Guatemala, South America: French Guiana; Oceania: Guam, Northern Mariana Islands, Palau. The pest has extended its range within the Americas, and has been introduced to Asia and Africa (CABI CPC), and is still spreading (Walker et al., 2006).

Damage: *P. marginatus* causes deformation of new growth, leaf yellowing, leaf curl, early fruit drop, fruit covered by the pest and wax secretions (CABI CPC), chlorosis, plant stunting, leaf deformation, early leaf and fruit drop, honeydew, and plant death (Walker et al., 2006). Its importance has recently increased; it causes damage especially on cassava, papaya, hibiscus, annona (CABI CPC), also avocado, citrus, cotton, tomato, eggplant, peppers, beans and peas, sweet potato, mango, cherry, and pomegranate (Walker et al., 2006). On papaya, heavy infestations rendered papaya fruits inedible, and high infestation levels were observed in Rajasthan, India, in many gardens (>80% damage, mat of mealybug on leaves, all leaves damaged, new shoots fully covered with mealybugs, fruit fall and blackening of fruits with full mealybug cover on fruits) (Mani et al., 2012). No specific data were found for Citrus.

Other information: There have been many interceptions in the USA, from many origins (mainly on papaya and hibiscus) (Miller et al., 2014).

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Yes
another crop)		

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- Mani M, Shylesha AN, Shivaraju C. 2012. First report of the invasive papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Homoptera: Pseudococcidae) in Rajasthan. Pest Management in Horticultural Ecosystems, Vol. 18, No. 2 pp 234 (2012)
- Miller D, Rung A, Parikh G, Venable G, Redford AJ, Evans GA, Gill RJ. 2014. Scale Insects, Edition 2. USDA APHIS Identification Technology Program (ITP). Fort Collins, CO. http://idtools.org/id/scales/factsheet.php?name=6986
- Walker A, Hoy M, Meyerdirk D. 2006. papaya mealybug Paracoccus marginatus. Featured creatures. UF/IFAS. University of Florida. http://entomology.ifas.ufl.edu/Creatures/fruit/mealybugs/papaya_mealybug.htm

Platynota flavedana (Lepidoptera: Tortricidae)

Location of life stages on plant parts: on Citrus, eggs on leaves, larvae in webbing tunnels, usually beneath the sepals of young fruits but also between leaves drawn together with silk, and pupae within the webbing (Strangways-Dixon, 1967).

Fruit pathway: Yes, as larvae.

Other pathways: plants for planting, cut flowers.

Hosts: Polyphagous incl. Acer, Helianthus, Dianthus caryophyllus, Rhododendron, Gossypium, Fragaria, Rosa, Citrus, Prunus persica, Malus, Rubus (Brown et al., 2008; Gilligan and Epstein, 2014; VirginiaFruit, 2016).

Distribution: North America: USA (Eastern part - Gilligan and Epstein, 2014; Maine to North Carolina and west to Minnesota and Arizona - VirginiaFruit, 2016); Caribbean; Jamaica (EPPO GD). Unconfirmed records from Hispaniola (Dominican Republic and Haiti) (Korycinska et al., 2014 citing others).

Damage: In Jamaica, it is an important but sporadic pest of Citrus; in heavy attacks large numbers of young Citrus fruits, each bearing a scar or hole in the area shielded by the sepals, are found beneath the trees (Strangways-Dixon, 1967). Larvae may cause economic damage by feeding on blossoms or fruit, and often web leaves together with blossoms and immature fruit (Gilligan and Epstein, 2014). The second generation generally causes most injury (Virginia Fruit, 2016). In Eastern USA, it is an important pest in apple production (Carde and Minks, 1995). On strawberry, it causes weakening of plants. Peach orchards in Indiana had damage rates above 2%. Roses in a greenhouse were attacked by larvae of *P. flavedana*, together with another unidentified tortricid: together, they were causing "considerable damage" to leaves and flowers in New Jersey (extract from Korycinska et al., 2014). The current impact of the pest is not clear.

Other information: Korycinska et al. (2014) concluded that "continued exclusion would seem the best option for the UK". *P. flavedana* was present on the EPPO Alert list from 1998 to 2002, but it was deleted as alert had been given and no further concern had been raised.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not
		known

References:

- Carde RT, Minks AK. 1995. Control of moth pests by mating disruption: successes and constraints. Annual review of entomology 40(1): 559-585.
- EPPO GD. EPPO Global database. http://gd.eppo.int
- Gilligan TM, Epstein M. 2014. Tortricids of Agricultural Importance. Interactive Keys developed in Lucid 3.5. Last updated August 2014. http://idtools.org/id/leps/tortai/index.html
- Korycinska A, Baker R, Eyre D. 2014. Rapid Pest Risk Analysis (PRA) for Platynota flavedana, Platynota idaeusalis, Platynota rostrana. FERA, UK.
- Strangways-Dixon J. 1967. Platynota flavedana Clem. (Lepidoptera, Tortricidae) on Citrus in Jamaica. Bulletin of Entomological Research / Volume 57 / Issue 03 / November 1967, pp 399-404.

Virginia Fruit. 2016. Variegated Leafroller, Platynota flavedana Clemens. The Virginia Fruit Web Site: Apple IPM, Updated 15 July 2016. http://www.virginiafruit.ento.vt.edu/apple-fruit-ipm.html

Praelongorthezia praelonga (Hemiptera: Ortheziidae)

Location of life stages on plant parts: Most publications mention leaves (USDA, 2015; CU Lassallista, 2012), also branches, flowers and trunks in high populations (Kondo et al., 2013). In addition, its spread mechanism may favour association with the fruit (see Other information). The association with fruit is considered uncertain.

Fruit pathway: yes, not mobile, with an uncertainty.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Hosts in 32 families (Malumphy, 2014), including Citrus, Citrus sinensis, Coffea, Malpighia glabra, Solanum melongena (CABI CPC), Citrus reticulata, Mangifera, Cocos nucifera, Lonicera, Curcubita pepo,

Brown JW, Robinson G, Powell JA. 2008. Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). http://www.tortricid.net/foodplants.asp.

Gossypium, Hibiscus, Carica, Saccharum, Rosa, Coffea, Fortunella, Capsicum, Theobroma cacao (Garcia Morales et al., 2016).

Distribution: Caribbean: Antigua and Barbuda, Barbados, Curaçao, Dominica, Grenada, Jamaica, Montserrat, Saint Kitts and Nevis, Saint Vincent and the Grenadines, Trinidad and Tobago (CABI CPC), British Virgin Islands, Puerto Rico, Saint Croix, US Virgin Islands (Garcia Morales et al., 2016 onwards), UK Virgin Islands, Guadeloupe; Martinique; (Kondo et al., 2013); South America: Brazil, Guyana, Suriname (CABI CPC), Argentina, Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Venezuela (Garcia Morales et al., 2016); North America: USA (Virginia) (USDA, 2012), Mexico (Garcia Morales et al., 2016); Central America (Kondo et al., 2013): Panama (Garcia Morales et al., 2016). Africa: Congo Dem. Rep. (Kondo et al., 2013), Congo (Mbete et al., 2011); Reunion (Garcia Morales et al., 2016). Introduced into Afrotropical region in the early 2000s (Kondo et al., 2013).

Damage: On Citrus, *P. praelonga* causes defoliation, weakening of trees, fruit drop over 50%, fruit that remain acid and with a low sugar content, and in severe cases the fruits are smaller and cannot be sold; the pest also favours the development of sooty moulds (Fundecitrus, no date). In Brazil, it is the main soft scale on Citrus (Schinor et al., 2011). On acerola (Malpighia), it causes severe damage and death of plants (Rabelo Barbosa et al., 2007). In Argentina, it is reported to also affect fruit (Spanish NPPO). Damage on other hosts was not looked at.

Other information: In severe attacks, the pest may occur on plants under the host tree. It spreads readily through orchards with harvesting material, clothes, people, vehicles, wind, spray jet; it is important to make inspections before harvesting and spraying (Fundecitrus, no date). Kondo et al. (2013) mentions that healthy fruit should be picked before infested ones to avoid spreading the pest (within orchards). *P. praelonga* has been intercepted in the USA on Cajanus, Croton, Kalanchoe, Mentha, Rosmarinus (Evans and Dooley, 2013). Proposed in answer to EPPO questionnaire on pests of concern for Citrus.

Recorded impact: High	Intercepted: Yes	Spreading/invasive: Yes

References:

CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc

- CU Lasallista. 2012. Citricos: cultivo, poscosecha e industrializacion. Caldas: Corporacion Universitaria Lasallista, 2012. 367 p.; il. (Serie Lasallista Investigacion y Ciencia).
- Evans GA, Dooley JW. 2013. Potential Invasive Species of Scale Insects for the USA and Caribbean Basin. Chapter 18 In Potential Invasive Pests of Agricultural Crops (ed. J. Peña). CAB International
- Fundecitrus. no date. Ortézia. http://www.fundecitrus.com.br/doencas/ortezia/23
- García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database. doi: 10.1093/database/bav118. http://scalenet.info.
- Kondo T, Peronti A, Kozár F, Szita E. 2013. The Citrus Orthezia Praelongorthezia praelonga, a Potential Invasive Species Chapter 17 In Potential Invasive Pests of Agricultural Crops (ed. J. Peña). CAB International
- Malumphy C. 2014. An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles. Zootaxa 3846 (1): 069–086
- Mbete P, İtoua-Apoyolo CM, Kiyindou A, Ngokaka C, N'Doungou J-P. 2011. Evaluation des dégâts causés aux Agrumes par la cochenille (Praelongorthezia proelonga) dans les quartiers Sud de la ville de Brazzaville. Journal of Applied Biosciences 39: 2619 2625
- Rabelo Barbosa F, Gonzaga Neto L, de Lima Carvalho GK, da Silva Carvalho R. Manejo e Controle da Cochonilha Ortézia (Orthezia praelonga), em Plantios Irrigados de Acerola, no Submédio São Francisco. Circular tecnica 83. Petrolina, PE. Dezembro, 2007
- Schinor EH, Bortolato Martelli I, de Andrade Pacheco C, de Azevedo FA. 2011. Eficiência de inseticidas no controle de Praelongorthezia praelonga em laranjeira doce. Citrus Research & Technology, Cordeirópolis, v.32, n.2, p.93-102, 2011
- USDA. 2012. Pest List for the Importation of Fresh Commercial Citrus Fruit: Grapefruit (Citrus × paradisi); Lime (C. aurantiifolia); Mandarin Orange, Tangerine, or Hybrids (C. reticulata); Sweet Orange (C. sinensis); and Tangelo (C. × tangelo) from Peru into the Continental United States. Version 1.
- USDA. 2015. Risk Assessment for the Importation of Fresh Lemon (Citrus limon (L.) Burm. f.) Fruit from Northwest Argentina into the Continental United States

Prays endocarpa (Lepidoptera: Yponomeutidae)

Location of life stages on plant parts: eggs and larvae on fruit, pupae on fruits, stems or the edges of leaves (UK plant health service, unpublished PRA citing others). Larvae feed on the fruit rind (never enter endocarp) (EFSA, 2008).

Fruit pathway: yes, as eggs, larvae or pupae.

Other pathways: plants for planting.

Hosts: Citrus sinensis, Citrus (EPPO GD), and other Rutaceae, including Aegle marmelos (EFSA, 2008).

Distribution: Asia: India, Indonesia, Malaysia, Philippines, Singapore, Sri Lanka (EPPO GD), Vietnam (Vang, 2011), Thailand (French PRA, 2003); Oceania: Guam, Northern Mariana Islands (EPPO GD).

Damage: In most of its current range, *P. endocarpa* is considered a minor pest of citrus (Hill,1983), but it is noted as an occasional pest in Malaysia and Thailand, and a key pest of oranges in Indonesia (French PRA, 2003). It is also mentioned as a pest of pomelo in Vietnam (Vang, 2011). In Indonesia, mandarins are not affected, but oranges and lemons may be severely attacked. In Thailand, it attacks grapefruit and limes. Lignified galls form around the site of larval activity. Generally the eating quality is not affected. If lignification extends into the fruit pulp, the fruit becomes unsuitable for direct consumption although the juice can still be used. Premature fruit fall may result from severe infestations (UK plant health service, unpublished PRA citing others).

Other information: Proposed in answer to the EPPO questionnaire on pests of concern for Citrus.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not
		known

References:

EFSA. 2008. Pest risk assessment made by France on Prays endocarpa considered by France as harmful in French overseas departments of French Guiana, Guadeloupe, Martinique and Réunion. Scientific Opinion of the Panel on Plant Health. The EFSA Journal (2008) 681, 1-16

EPPO GD. EPPO Global database. http://gd.eppo.int

French PRA. 2003. Analyse de Risque Phytosanitaire. Version simplifiée. *Prays endocarpa* Meyrick. Lepidoptera. Référence; AGRa8

Hill DS. 1983. Agricultural Insect Pests of the Tropics and Their Control. CUP Archive, 14 juil. 1983-760 pages

Vang le V, Do ND, An le K, Son PK, Ando T. 2011. Sex pheromone components and control of the citrus pock caterpillar, Prays endocarpa, found in the Mekong Delta of Vietnam. J Chem Ecol. 2011 Jan;37(1):134-140.

Prays endolemma (Lepidoptera: Yponomeutidae)

Location of life stages on plant parts: young fruits, mature fruits and flowers (French PRA for *P. endocarpa*, 2003; Ubaub and Ocampo, 2012a). Eggs are laid at the surface of the fruit, and larvae bore into the rind (Ubaub and Ocampo, 2012b). In some cases feeding may reach the pulp, and the fruit be infested by other pests such as fruit flies (Ubaub and Ocampo, 2012a).

Fruit pathway: Yes, with an uncertainty. In Ubaub and Ocampo (2012a), larvae were not present in the fruit in the development stages before harvest. It is not clear if this applies at the location studied or throught the distribution of the pest.

Other pathways: plants for planting.

Hosts: Citrus (French PRA, 2003), Citrus maxima (Ubaub and Ocampo, 2012a), Citrus sinensis, Citrus aurantiifolia, C. medica, C. hystrix, C. decumana (Ubaub and Ocampo, 2012b).

Distribution: Asia: Philippines (Ubaub and Ocampo, 2012a). No other record was found.

Damage: *P. endolemma* is a key pest of citrus in the Philippines (French PRA, 2003). It is mentioned as a major pest of *Citrus maxima* (Ubaub and Ocampo, 2012a, for one region). Severely damaged fruit may fall and those with moderate damage may remain on the tree until harvest (Ubaub and Ocampo, 2012a). The quality of the fruit is affected mostly because of damage to the rind (Ubaub and Ocampo, 2012b). No data was found for other Citrus species.

Recorded impact: Moderate	Intercepted: Not known	Spreading/invasive: Not
		known

References:

French PRA. 2003. Analyse de Risque Phytosanitaire. Version simplifiée. Prays endocarpa Meyrick. Lepidoptera. Référence: AGRa8

- Ubaub LT, Ocampo VR. 2012b. Field biology, setal map and adult genitalia of the citrus rind borer *Prays endolemma* Diakonoff (Lepidoptera: Yponomeutidae) on pummelo Citrus maxima (Burm) Merr. (Rutaceae) in region XI, Philippines. Philippine entomologist. 2012. Vol. 26, № 1. 65-92
- Ubaub LT, Ocampo VR. 2012a. Pattern of infestation and characteristics damage of citrus rid borer *Prays endolemma* Diakonoff (Lepidoptera: Yponomeutidae) on pumello Citrus maxima (Burm) Merr. (Rutaceae) in region Xi, Philippines. Philippine entomologist. 2012. Vol. 26, № 2. 137-155

Proeulia chrysopteris (Lepidoptera: Tortricidae)

Location of life stages on plant parts: larvae feed on buds, flowers, leaves, fruits and shoots, and overwinter on bark; eggs are laid on leaves (CABI CPC; Cubillos Vallejos, 2011). On orange, larvae bore into the rind and may reach the pulp (Cubillos Vallejos, 2011).

Fruit pathway: yes, as larvae.

Other pathways: plants for planting, cut flowers and branches.

Hosts: Polyphagous, hosts incl. *Citrus sinensis, Acer, Diospyros* (Koch and Waterhouse, 2000), *Vaccinium corymbosum, Corylus avellana* (new hosts in Cubillos Vallejos, 2011), *Vitis vinifera, Actinidia deliciosa, Malus domestica, Prunus armeniaca, Prunus domestica, Prunus persica, Pyrus communis* (CABI CPC), *Euonymus, Cotoneaster, Lonicera japonica, Prunus cerasifera, Viburnum, Platanus orientalis, Rosa* (Cubillos Vallejos, 2011), *Pinus radiata, Pinus, Eriobotrya japonica, Prunus avium, Juglans regia, Acer buergerianum, Ulmus* (Cepeda and Cubillos, 2011).

Distribution: South America: Chile (Cepeda and Cubillos, 2011).

Damage: *P. chrysopteris* is native to Chile, and has moved from natural habitats into crop systems, including exotic species of berries and ornamental trees. Direct damage is due to larvae feeding on buds, leaves, flowers and fruit; fruits are cut and pierced with large galleries. On oranges, larvae bore into the rind and may reach the pulp; on apple, fruits may be emptied; on kiwi, fruit pedicels are attacked; on grapevine, it is harmful to buds (Cubillos Vallejos, 2011). *P. chrysopteris* has infested kiwifruit orchards in less than a decade. It is considered as a secondary or incidental pest problem in fruit trees, but the whole genus is considered as an emergent pest problem of fruit trees and vineyards (CABI CPC). It is occasionally important, especially on apple, and is of quarantine importance on kiwi as larvae are present at the time of harvest (Cubillos Vallejos, 2011). It is a significant pest of table grapes (Biosecurity Australia, 2005). No specific data was found for Citrus.

Other information: The pest is of quarantine concern to some countries, such as the USA, China, Korea Rep, Japan, Mexico (CABI CPC). *Proeulia* spp. have been intercepted in the USA on Citrus (Brown, 2011), and in the USA and Japan on blueberry (BlueberriesChile, 2011-2012).

Recorded impact: Moderate	Intercepted: Yes (as genus)	Spreading/invasive: Not
(on another crop)		known

References:

- Biosecurity Australia, 2005. Revised Draft Import Risk Analysis Report for Table Grapes from Chile. Part B. Commonwealth of Australia.
- BlueberriesChile, 2011-2012. Estadisticas De Inspecciones De Arandanos. Temporada 2011/2012. Programa De Pre-Embarque. Sag/Usda-Aphis/Asoex. Powerpoint presentation.
- Brown JW. 2011. Tools for identifying the larvae of leafrollers (Lepidoptera: Tortricidae) frequently intercepted at U.S. ports of entry. Draft. September 2011.
- CABI CPC. Crop Protection Compendium. CAB International, UK. http://www.cabi.org/cpc
- Cepeda DE, Cubillos GE. 2011. Descripción del último estado larvario y recopilación de registros de hospederos de siete especies de Tortrícidos de importancia económica en Chile (Lepidoptera: Tortricidae). Gayana 75(1): 39-70, 2011
- Cubillos Vallejos GE. 2011. Caracterización Taxonómica Del Último Estado Larvario De *Proeulia auraria* (Clarke) Y Proeulia chrysopteris (Butler) (Lepidoptera: Tortricidae) [thesis]. Universidad de Chile, Santiago.
- Koch KC, Waterhouse DF. 2000. The distribution and importance of arthropods associated with agriculture and forestry in Chile (Distribucion e importancia de los artropodos asociados a la agricultura y silvicultura en Chile). ACIAR Monograph No. 68, 234 pp.

Pseudococcus maritimus (Hemiptera: Pseudococcidae)

Location of life stages on plant parts: On any part of plants, incl. leaves, fruit, roots (McKenzie, 1967). No specific information was found for Citrus, but the pest was intercepted on Citrus fruit (see Other information).

Fruit pathway: Yes.

Other pathways: Plants for planting.

Hosts: Highly polyphagous, incl. *Citrus, Vaccinium, Malus, Vitis, Persea, Passiflora, Pyrus, Rubus* (Garcia Morales et al., 2016), *Diospyros kaki* (Koch and Waterhouse, 2000). In Poland, found indoors on *Abutilon striatum, Citrus grandis, Passiflora auriculata, P. quadrangularis, S. arboricola*; additionally *Pyrus* and *Prunus armeniaca* are mentioned (Goszczyński and Golan 2011).

Distribution: North America: Canada, Mexico, USA; South America: Argentina, Brazil, Chile, Colombia, French Guiana; Caribbean: Guadeloupe, Puerto Rico; Central America: Guatemala (Garcia Morales et al., 2016); Asia: Armenia, Indonesia (Garcia Morales et al., 2016), China (Biosecurity NZ, 2009a; Abudujapa and Sun, 2007); Europe: Poland (indoors only, in greenhouses, offices) (Goszczyński and Golan 2011). Uncertain records: Madeira (possibly misidentification) (Garcia Morales et al., 2016): 'former-USSR' (CABI CPC). Garcia Morales et al. (2016) indicate that the pest seems confined to the New World and has frequently been misidentified as *Pseudococcus affinis*.

Doubtful records: CABI CPC mentions unconfirmed records for Hungary and the Netherlands. The pest is not present in Hungary (Kozar et al., 2013). No record found for the Netherlands.

Damage: *P. maritimus* is not an important pest of Citrus in Southern China according to Li et al. (1997). No other reference was found for Citrus. On grapevine, feeding damage is primarily on leaves, and the pest also causes honeydew and sooty moulds on fruit (Biosecurity New Zealand 2009b). In vineyards it is the primary mealybug pest in North America (Daane et al. 2012) and one of the five important mealybugs in Brazil (da Silva et al. 2014). In China, it is present on grapevine and control methods are mentioned (Biosecurity NZ, 1999a; Abudujapa and Sun, 2007). It is also a vector of grapevine leafroll-associated virus-3 (GLRaV-3) (Grasswitz and James 2008). Since the 1970s *P. maritimus* has become an increasingly severe pest of pear and apple in the USA, and it is a pest of pear and apricot in California (Biosecurity New Zealand 2009a).

Other information: *P. maritimus* was intercepted in the USA (29 times in 1995-2012) (Miller et al., 2014), in the Korean Republic on Citrus fruit, Vitis fruit and Schefflera (Suh et al., 2013), in New Zealand on table grapes, apricot and pear fruit (Biosecurity New Zealand 2009a & b), and in Israel on Malus fruits (Dropsa Review, 2016).

Recorded impact: High (on	Intercepted: Yes	Spreading/invasive: Yes
another crop, also vector)		

References:

- Abudujapa T; Sun Y. 2007. Studies on the occurrence law and control methods of Pseudococcus maritimus (Ehrhorn) in Moyu County. Xinjiang Agricultural Sciences, 44(4): 476–480.
- Biosecurity Australia 2005. Revised Draft Import Risk Analysis Report for Table Grapes from Chile. Part B. Commonwealth of Australia.
- Biosecurity New Zealand 2009a. Import risk analysis: table grapes (Vitis vinifera) from China. MAF Biosecurity New Zealand, Wellington, New Zealand, 314 p.
- Biosecurity New Zealand 2009b. Import Risk Analysis: Pears (Pyrus bretschneideri, Pyrus pyrifolia, and Pyrus sp. nr. communis) fresh fruit from China. Ministry of Agriculture and Forestry.
- CABI CPC. Crop Protection Compendium. CAB International, UK. URL: http://www.cabi.org/cpc
- Da Silva VCP, Bertin A, Blin A, Germain J, Bernadi, D, Rignol G, Botton M, Thibaut M 2014. Molecular and Morphological Identification of Mealybug species (Hemiptera: Pseudococcidae) in Brazilian Vineyards. PloS one 9(7). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103267, accessed 2.11.2016.
- Daane KM, Almeida RPP; Bell VA, Walker JTS, Botton M, Fallahzadeh M et al. 2012. Biology and Management of Mealybugs in Vineyards. N.J. Bostanian et al. (eds.), Arthropod Management in Vineyards: Pests, Approaches, 271 and Future Directions, DOI 10.1007/978-94-007-4032-7_12,Springer Science+Business Media B.V. 2012, S. 271–307
- Dropsa review. 2016. Excel file of pests as Deliverable to the project, with background in : Steffen K, Grousset F, Petter F, Suffert M, Schrader G. 2016. EU-project DROPSA: first achievements regarding pathway analyses for fruit pests. Bulletin OEPP/EPPO Bulletin, 45 (1) : 148–152.
- García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database. doi: 10.1093/database/bav118. http://scalenet.info.

- Goszczyński, W, Golan K 2011. Scale insects on ornamental plants in confined spaces. Aphids and other hemipterous insects, 17, p.107-119.
- Grasswitz TR, James DG 2008. Movement of grape mealybug, Pseudococcus maritimus, on and between host plants. Entomologia Experimentalis et Applicata 129, p. 268-275.
- Koch KC, Waterhouse DF 2000. The distribution and importance of arthropods associated with agriculture and forestry in Chile (Distribucion e importancia de los artropodos asociados a la agricultura y silvicultura en Chile). ACIAR Monograph No. 68, 234 pp.
- Kozar F, Benedictty ZK, Fetyko K, Kiss B, Szita E 2013. An annotated update of the scale insect checklist of Hungary (Hemiptera, Coccoidea). Zookeys 309, p. 49-66.
- Li L, Wang R, Waterhouse DF. 1997. The Distribution and Importance of Arthropod Pests and Weeds of Agriculture and Forestry Plantations in Southern China. ACIAR, Canberra, Australia.
- McKenzie HL. 1967. Mealybugs of California: With Taxonomy, Biology, and Control of North American Species (Homoptera, Coccoidea, Pseudococcidae). University of California Press. 525 pages
- Miller, D., A. Rung, G. Parikh, G. Venable, A.J. Redford, G.A. Evans, and R.J. Gill. 2014. Scale Insects, Edition 2. USDA APHIS Identification Technology Program (ITP). Fort Collins, CO. http://idtools.org/id/scales/
- Suh SJ, Yu HM, Hong K-J 2013. List of Intercepted Scale Insects at Korean Ports of Entry and Potential Invasive Species of Scale Insects to Korea (Hemiptera: Coccoidea). Korean J. Appl. Entomol. 52(2): 141-160.