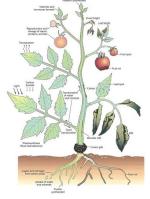
UK perspective of using new technologies & factors which may restrict further implementation

Kelvin Hughes
Chief Plant Health & Seeds Inspector,
Animal & Plant Health Agency (APHA/Defra)


EPPO Inspectors' technical workshop The Hauge 18 -20th November 25

Outline of presentation

- Introduction
 - My background
 - Inspection focus
 - Methods available

Technology Readiness & Deployment Levels level

Basic principles observed and reported

Actual system completed and :qualified" through test & demonstration (in the operational environment System prototype demonstration in the planned operational environment

Component and/or breadboard validation in relevant environment

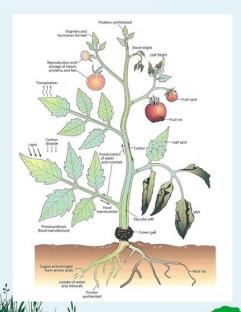
Component and/or breadboard validation in 'laboratory' environment

Analytical and experimental critical function and/or characteristic proof-of-concept

UK examples

My background

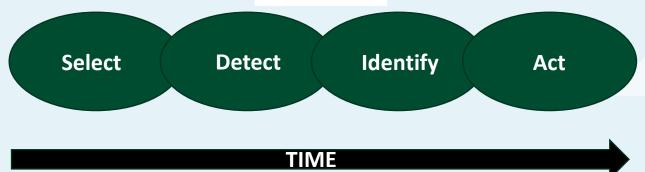
Civil Servant since 1995

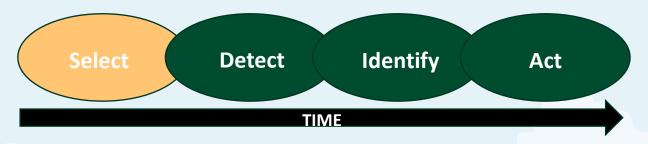


Plant pathologist - Specialising in fungal diseases (mycologist)

Also involved with

- Producing laboratory methods (DNA & antibody)
- Point of sampling testing
- Production of standards & protocols
- Overseeing inspection for England & Wales




Inspection need

- "Inspection to action
- Often time critical
 - fresh produce, just in time delivery, port costs, reduce pest spread
- Activities focus on:
 - Select, Detect & Identify (Diagnose), Act.
- Try to reduce chain time (Diagnose)

Sampling problems

Which sample do I take?

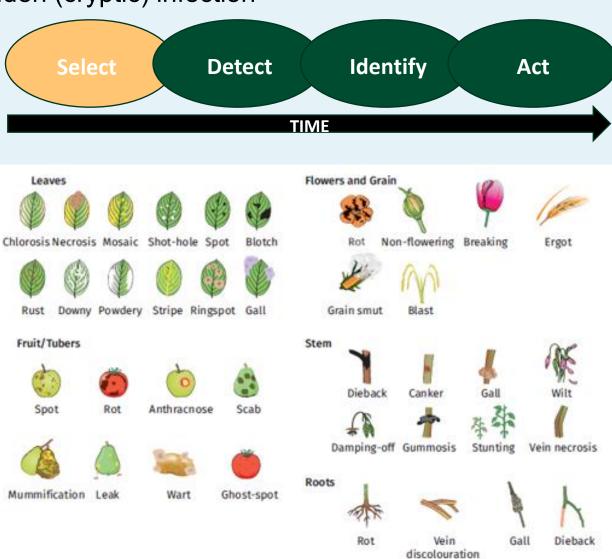
How do we cover the ground?

What facilities available?

When do we sample?

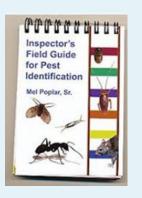
How much time do we have?

What will we do with results?

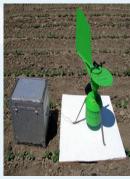

Pest signs

- Know what good looks like
- Dealing with hidden (cryptic) infection

Agency

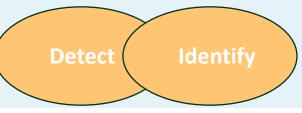


Field methods & aids available


Detect

Identify

- Guides & knowledge
- Trapping (autonomous or not)
 - sticky, light, air, pheromone etc
- Magnifiers
- Remote Sensing (UAV & traps)
- Lateral Flow Devices, LAMP platforms
- Sequencing

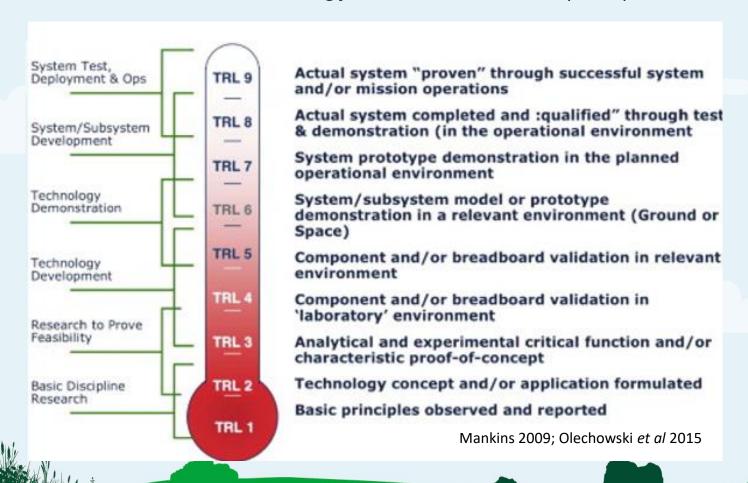


Field technologies applied by UK

 Science partner with Fera since 1980's

In crops & at the border

Many new adaptations



Technology maturity

Often described as a Technology Readiness Level (TRL), scale 1-9

Field test not a lab assay

Technology maturity

System Test, Deployment & Ops Actual system "proven" through successful system TRL 9 and/or mission operations Actual system completed and :qualified" through test TRL 8 System/Subsystem & demonstration (in the operational environment System prototype demonstration in the planned TRL 7 operational environment Technology System/subsystem model or prototype Demonstration TRL 6 demonstration in a relevant environment (Ground or TRL 5 Component and/or breadboard validation in relevant Technology Development Component and/or breadboard validation in 'laboratory' environment Research to Prove TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept Technology concept and/or application formulated Basic Discipline Research Basic principles observed and reported

Deployment readiness

Verses

- Wider operational considerations required
 - Where, why & how
 - Simple, robust, quick
- May be compromises

Potential barriers

Technical barriers

- Test performance & robustness
- · Specific demands
 - · Challenging & diverse test matrices
 - · Diversity of targets & small business markets
 - Pest biology
- Lack of technical developments

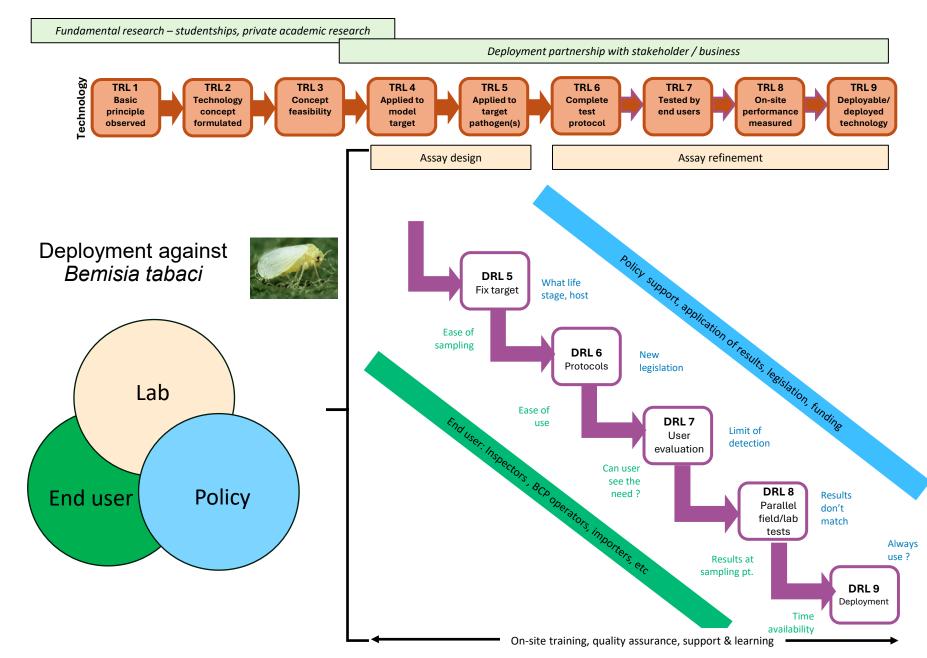
Policy decisions

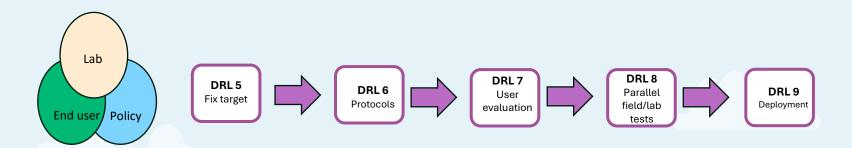
- · How results will be used
- · Legal basis for tests
- Uncertainty about approval processes

Operational & logistical barriers

- Costs
- · Physical setting & complexity of workflows
- End user skills, training and support
- Staffing (capacity, shift patterns, staff turnover)

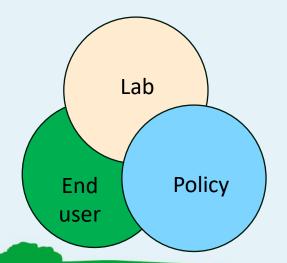
Cultural barriers


- Risk aversion
 - Tests performance different to lab
 - Limited validation
 - Interpretation & relaying of information
- Other real-time priorities
- Shift patterns / need for support


- Fera, UK developing idea of Deployment Readiness Levels (DRL)
- Used own experience questionnaires & practical application

Readiness framework TRL with DRL

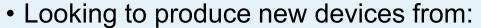
Benefits of DRL framework



- Co-design clear pathway towards deployment for tests
- Helps set deployment expectations (time, effort, costs)
- Encourages pre-emptive approach to potential barriers:
 - DRL 5: What do end users want & why
 - DRL 6: Assay considered in entirety e.g. robustness & reliability, costs & policy
 - DRL 7: Refine user requirements before application
 - DRL 8: Evaluate systems in "real world"
 - DRL 9: Deploy in "real world" & regular review

Recent deployment activities

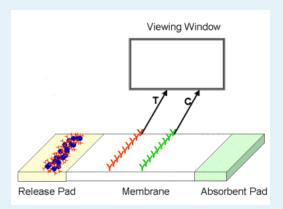
- Serological, molecular & drone
- Involving lab, policy & inspectors
- Applying DRL framework



Lateral flow devices

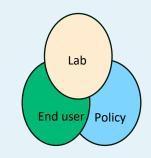
- Inspectors preferred tool
 - Quick, robust, high accuracy, relatively cheep
 - Phytophthora spp device routinely being used DRL9)
 - Xanthomonas spp assay being rolled out (DRL 8)

- Historic cell lines (DRL 5)
- New synthetic & classic antibodies (TRL 5)
- Use of LAMP amplicons on LFDs (TRL5)



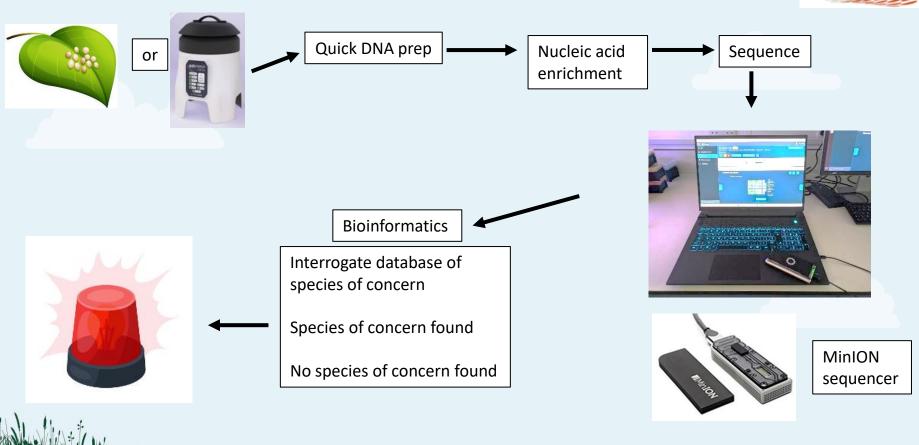
Drone use

- Multispectral & thermal cameras
- Imagining used for:
 - Narcissus inspections (DRL 8)
 - Colorado beetle surveillance (DRL 9)
 - Seed potato crops for PVY detection (DRL 7)
 - Yellow-Legged Hornet nests (DRL 9)
 - Avian Influenza (DRL 6)
- Advanced image processing under consideration (TRL 3)


Molecular tools - LAMP / Genie

- Talk by Ben Walpole
 - Bemisia tabaci & Liriomyza species (DRL 8-9)

- TRL & DRL process being applied for other targets
- Targets under discussion:
 - Xylella, Phytophthora & Xanthomonas spp, various potato & tomato viruses

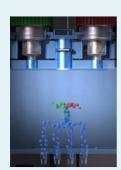


Molecular tools – Barcoding at the border

Method development for sequencing at border points (TRL 3)

OptiGene LAMP cartridge system - MDX4A

- User centric design
- One step cartridge system, results < 30 min
- No to low interpretation of results
- On journey to deployment (DRL 6-7)


Add sample into vial & shake

Place vial into test cartridge

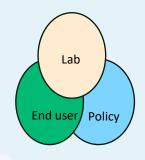
Place test cartridge into device. Press start

Fully automated liquid handling and measured dispensing

Fully automated isothermal DNA/RNA amplification and pathogen identification by fluorescence measurement.

Results displayed on wireless connected smart device

LAMP cartridge system - MDX4A



Conclusions

- Often clear need for in-field diagnostic tools
- Many potential barriers to deployment:
 - Technical, Policy, Operational, Cultural
- Vital to co-design deployment between Lab, Policy teams & End users
- For field use:
 - Try to get TRL & DR levels to evolve together
 - Fera developing a system to help the systems co-evolve.
- DRL approach being put into new tools under development
- Potential for development of EPPO guideline for others to follow
- Looking for partners to develop & evaluate new tools for inspectors

Thank you

- Jenny Tomlinson & Lynn Laurenson
 (Defra Future Proofing Plant Health; Pathsafe Programme; GAP DC; Barcoding for Biosecurity)
- Danni Marrison, Ben Walpole, Paul Beales, APHA
- Ross Haffenden & Michael Andreou, OptiGene
- Defra for funding work & attending this workshop

