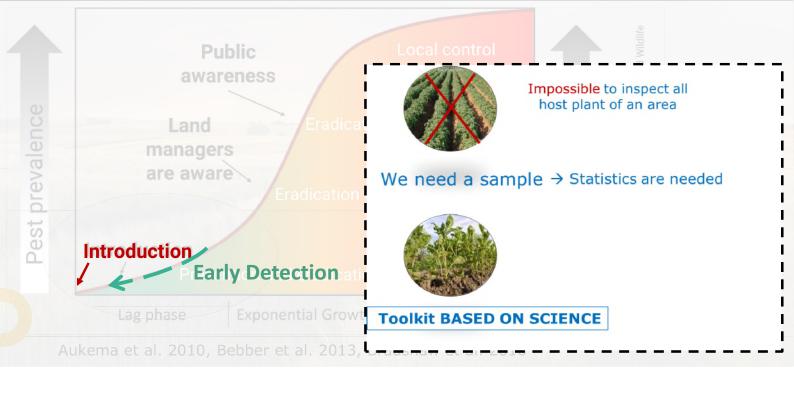

EFSA'S SUPPORT FOR MORE EFFECTIVE PLANT HEALTH INSPECTIONS
SYBREN VOS

Regulation (EU) 2016/2031

Requirements for early detection

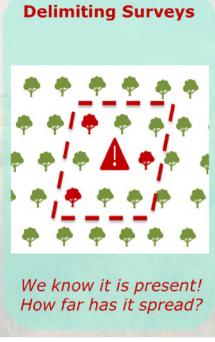
Article 22 - Surveys on Union quarantine pests and provisional UQP

- Risk based detection surveys for all UQP that can become established or spread in a MS
- Visual examination, where appropriate sampling and testing
- Based on scientific sound and technical principles
- Reporting obligations

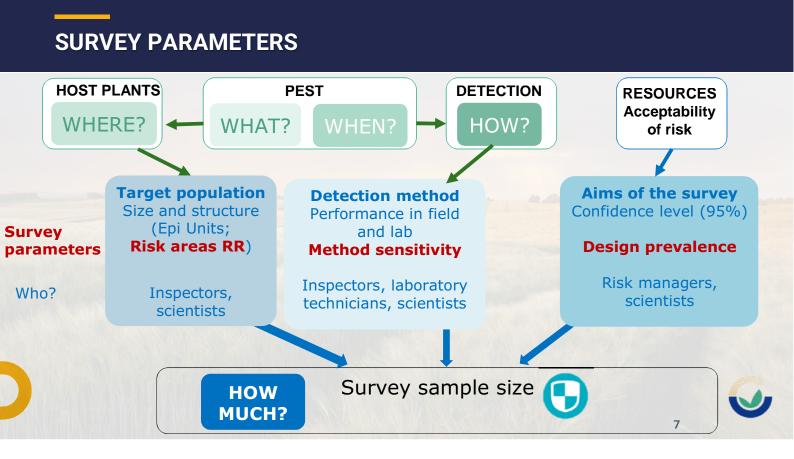

Article 23 - multiannual survey programmes and data collection

Article 24- Survey of Priority pests

- Annual survey
- sufficiently high number of visual examinations, sampling and testing, with a high degree of confidence, the timely detection of those pests
- Reporting obligations




EARLY DETECTION AND SURVEY



EARLY DETECTION: PEST FREEDOM SURVEYS

WHERE: TARGET POPULATION STRUCTURE AND SIZE

EPIDEMIOLOGICAL SURVEY AREA INSPECTION RISK AREAS UNITS UNITS Country or land use categories areas around garden centres host plants administrative subdivision agricultural areas hosts with higher probability of infection forest areas Olea europaea Polygala myrtifolia Elementary unit for © EPPO and Camille Picard urban areas defining the size of the subdivisions

Level of application

of the statistics

Relative risk

Proportion of the population

Level of application

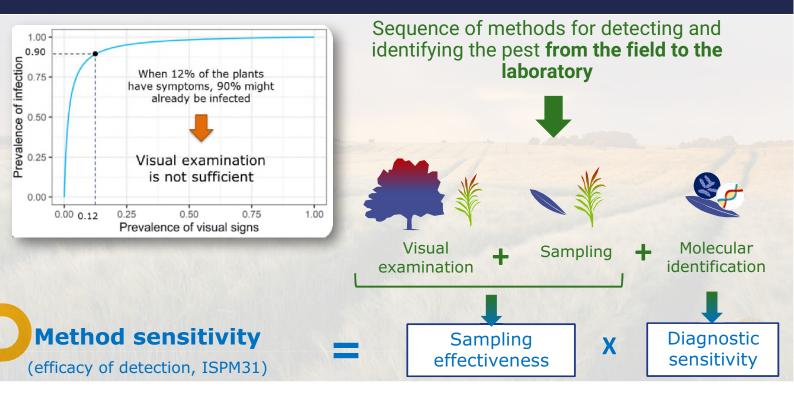
of the detection

method

WHERE: TARGET POPULATION

MS NPPOs often have no access to precise data on the geographical distribution of the target population in a survey area.

Remote sensing and advanced imaging	Satellite	Multispectral
		RGB
		Thermal
		Other
	Airborne/Unmanned Aerial Vehicle (UAV)/Mobile platform	Hyperspectral
		Multispectral
		RGB
		Thermal
		Light Detection and
		Ranging (LiDAR)
		Other
	Handheld	Spectrometer
		RGB
		Thermal
		Other



WHERE: TARGET POPULATION

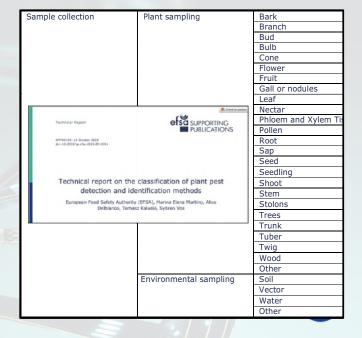
Using remote sensing:

- Can we map the target population? Are those maps available?
- Can we map epidemiological units and risk areas? Can we better target the survey by mapping areas where the probability of presence of the pest is higher?
- Can we estimate the size of each subdivision? Epi Units Risk Areas
- Can we measure the spread of the infection front in the Infested zone?
- (Can we estimate the impact caused by a pest?)

MS NPPOs often use Visual examination with very low sensitivity as symptoms are difficult to identify.

Option 1

- Using several detection methods in parallel, the overall method sensitivity increases
- Combination of field detection methods


Option 2

- Using pre-detection methods
- e.g. Remote sensing, eDNA

e.g. e-DNA

- For which pests eDNA analysis can be integrated in the survey process as a predetection method?
- Can we better target the survey performing eDNA analysis to support the prioritisation of the survey locations?
- Can e-DNA analysis improve the overall sensitivity of detection methods?

HOW: TRAPPING INSECT PESTS

- > MS NPPOs often use traps for insect surveys.
- More than 60% of regulated pests in EU are insects

		Cone Traps	
		Delta Traps	
		Funnel Traps	
		Water-Trap (McPhail) Traps	
		Other	
	Food-Based Traps	Bait Stations	
		Fruit Fly Traps	
		Jar Traps	
		Sticky Traps with Food	
		Attractants	
		Yellow Sticky Traps with	
		Food Coloring	
		Other	
	Sticky Traps	Blue Sticky Traps	
		Dual-Sided Sticky Traps	
		Sticky Bucket Traps	
		Sticky Hanging Traps	
		Sticky Roll Traps	
		Sticky Sphere Traps	
		Sticky Trap Cards with Pheromones	
		Sticky Tube Traps	
		Yellow Sticky Traps Other	
	Light Traps	Ultraviolet (UV) Light Traps	
	Light Haps	Other	
	Colour Traps	Colour Traps	
	Colour Traps		
		Other	
		Lure-and-	
		Other	
		Emergence	
		Fermentatio	
		Herbivore-	
		Interception	
		Semichemic	
		Other	

Pheromone Traps

Bucket Traps

Insect traps

Choosing traps for pest detection in the field is not easy!

- Which trap is the most appropriate for a given pest (or for type/group of pests)?
- How well do traps perform (trap effectiveness) at low pest prevalence? At high pest prevalence?
- What is the best deployment strategy for detection, delimiting, and monitoring surveys?
- Can a multi-pest trapping approach be adopted to optimize resources?

NEW CALL TO SUPPORT MS ON DETECTION METHODS

New detection methods

Knowledge transfer

Integration in toolkit

Practical and usable

Improve the detection of plant pests

FRAMEWORK CONTRACT IN 3 LOTS

COMMON OBJECTIVES FOR THE 3 LOTS

Knowledge Review

 State of the art of scientific and technical knowledge

Method & Guidance

- Practical guidelines
- Compatibility with EFSA's toolkit

Case Studies

Validate guideline

Dissemination

Workshop and webinar

COMMON OBJECTIVES

CONCLUSION

Exclusive focus on regulated EU quarantine pests

No generation of new research

Emphasis on knowledge transfer through stateof-the-art review

Produce integrated practical & user-friendly tools

Remote sensing and e-DNA could be used as PRE-DETECTION methods increasing the pest surveys effectiveness

A lot of knowledge on insect trappings is available and needs to be integrated to use it in improving pest surveys effectiveness

ANY QUESTIONS

STAY CONNECTED

