

Nederlandse Voedsel- en Warenautoriteit Ministerie van Landbouw, Natuur en Voedselkwaliteit

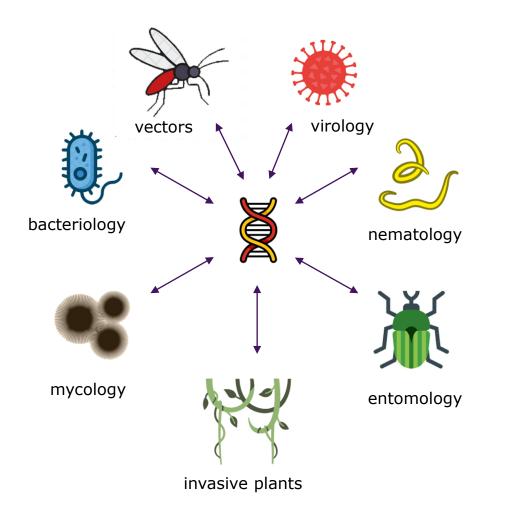
Accreditation of HTS tests in plant health diagnostics

Bart van de Vossenberg, NIVIP, NL EPPO workshop heads of labs 19-4-2023

Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP)

- International knowledge center and governmental authority on regulatory plant health, invasive plant species and vectors of human and veterinarian diseases
- Part of the NVWA, NPPO-NL, EURL Bacteriology and EURL virology

One department with many "faces"

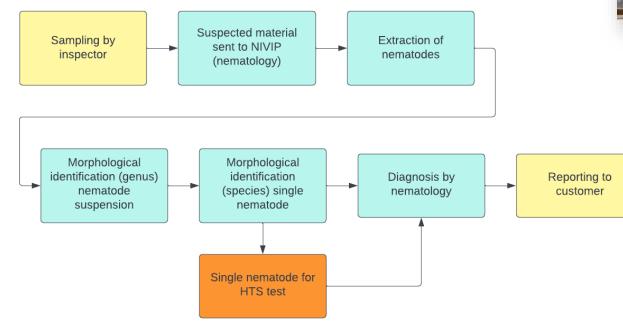

- ~120 staff members
- 7 organism specific groups, 1 molecular group, supporting groups (greenhouses, kitchen)
- Diagnostics, applied research, risk analysis, policy advice, collections, training missions

The Molecular Biology group

- Supports the organism specific groups with diagnostics and applied research projects
- Different organism specific groups with their own molecular challenges
- > 8 Researchers (incl. 1 bio-informatician)
- > 11 (research) technicians
- > 3 bio-informaticians
- Specific knowledge on molecular biological diagnostics, phylogeny, and (population) genomics per organism group

A group driven by technical advancements

- Four molecular laboratories to separate essential procedural steps
- 144 molecular tests embedded in the quality assurance system for "routine" use
- > Tests grouped in four methods
 - conventional PCR,
 - real-time PCR,
 - PCR-Sequencing (Sanger),
 - HTS (Illumina sequencing)



Molecular biological tests: part of the diagnostic process

 ISO17025 accredited for all molecular methods under flexscope

Phytosanitary flexible scope

- Not individual tests or methods are focus of the accreditation scope but the diagnostic process for a given pest
- Scope generically lists methods for which tests are validated and available
- An internal quality document lists specific pest + method combinations that can be used under accreditation
- Links are provided to individual tests and validation data

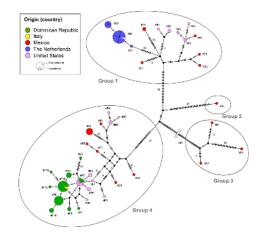
No.	Material or product		Type of activity ¹			Internal reference number			Locatior	
6	Plant material		Determination of plant viruses, viroids and phytoplasmas using bioassay (using test plants), DAS-ELISA, PCR, Real-time PCR, PCR-Sequencing, NGS (Next Generation Sequencing)*, including bio informatic data analysis				R-VIR-000-001			W
								1		
Genus	s Soorl	t	Matrix	Datum goedkeuring methode door RVA: 19-12-2016	Datum goedkeuring methode door RVA: 19-12-2016	Datum goedkeurin methode do RvA: 19-12-2014	or methode door RvA:	Datum goedkeuring methode door RvA: 19-12-2016	Datum goedkeuring methode door RvA: 11-5-2022	Datum goedkeuring formulier F-302-000-00
Tobamovi	rus Tomato brown fruit virus	n rugose	blad zaad*							20220912
Phytoplas	ma Grapevine flav dorée phytopla		floëem							20230127
titel	Aanvra	ag wi	jziging bi	nnen fle	kibele sc	ope				
code	F-302-0	F-302-000-001 versie 08 Ingangsdatum:20-1-2022 pag. 1						van 5		

In te vullen door aanvrager

Code van opgeslagen pdf & R-VAKGEBIED-000-001: *B-302*-TOBRFV_Versie 01 Organismen op formulier:

- Tomato brown rugose fruit virus (ToBRFV)

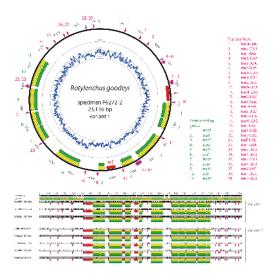
Vakgebied overstijgende methode op formulier:


- High-throughput sequencing analysis (HTS)

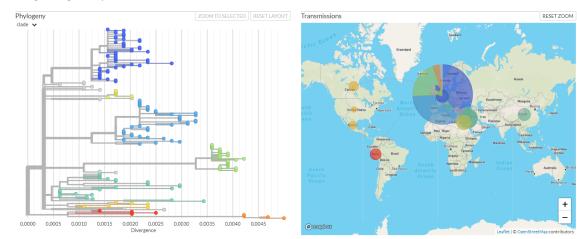
High Throughput Sequencing (HTS)

- Since 2014, HTS (Illumina sequencing) is used in applied research at NIVIP
- ad hoc analysis pipelines were constructed for specific research questions
- Many manual analysis steps with little standardization
- Since 2019 from *ad hoc* research applications to standardized diagnostics

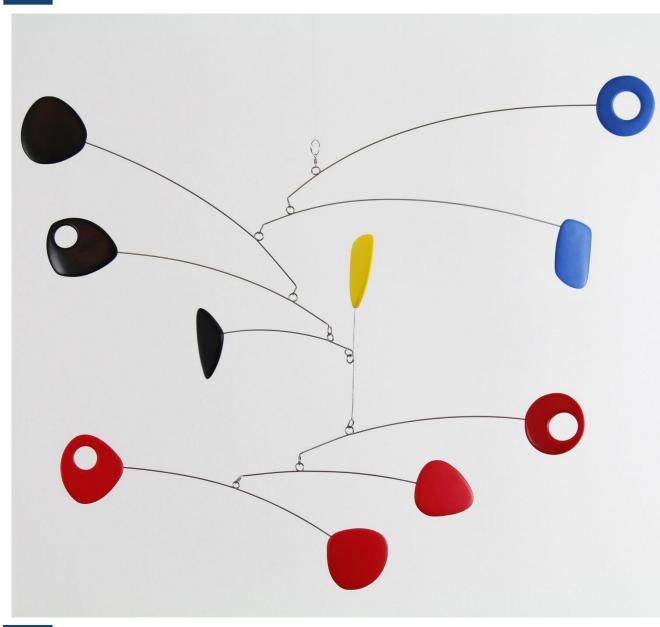
Tracking outbreak populations of the pepper weevil *Anthonomus eugenii* (Coleoptera; Curculionidae) using complete mitochondrial genomes


Bart T. L. H. van de Vossenbergo¹•, Tim Warbroek¹, Joseph Ingerson-Mahar², Cees Waalwijk³, Lucas P. van der Gouw¹, Bernadette Eichinger², Antoon J. M. Loomans

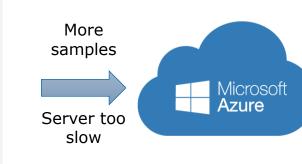
An Integrated Approach for Synonymization of *Rotylenchus rhomboides* with *R. goodeyi* (Nematoda: Hoplolaimidae) Reveals High Intraspecific Mitogenomic Variation


Phologeichangbam Rollsh Singh 📴 Bart T. L. H. van de Vostenberg, Katarzyna Rybarczyk-Mydkwska, Magdalena Kowalewska-Crosskowska Wim der Land Gerrik Karssen

Published Online: 6 Apr 2022 https://doi.org/10.1094/PHYTO-08-21-0363-R


Real-time tracking of Tomato brown rugose fruit virus (ToBRFV) outbreaks using Nextstrain (v3)

Maintained by Bart T.L.H. van de Vossenberg and Michael Visser. Showing 179 of 179 genomes sampled between Nov 2014 and Oct 2021.


Implementing Illumina sequencing in standardized diagnostic setting

- The power of HTS needed in a diagnostic setting
- > Many different aspects to cover
- Constant refining needed with growing demand
- Increase in one factor results in disbalance and triggers the need to adjust other factors
 - kinetic mobile

Multiple Users Linux

Data from lab

Connection too slow

Own dedicated data line

Analysis on stand-alone PC CLC genomics workbench Windows environment Single user Multiple PCs in local network License server Windows and Linux

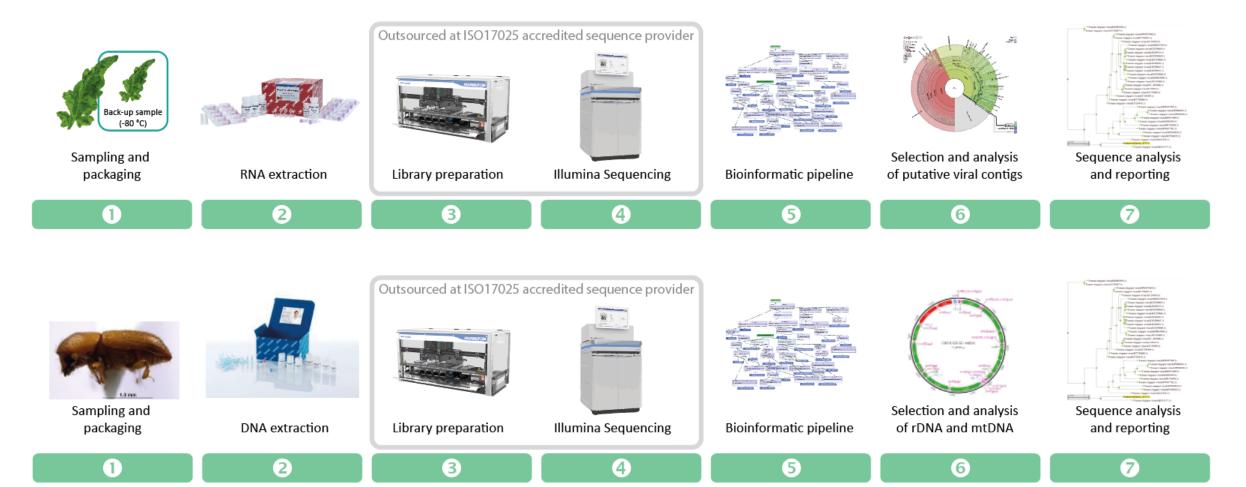
Multiple PCs in virtual network Windows and Linux PCs Databases Transfer of data from lab to cloud

Commercial tools not fit for purpose

Create custom scripts New bioinformatic expertise needed More samples

Increase data storage Train new staff to analyze samples

Computational intensive pipelines


shorter turnover time needed

Defining the tests

- > A test is a specific application of a method (EPPO PM7/76)
- > Includes everything from nucleic acid extraction to data interpretation (EPPO PM7/98)

Describing tests in standard operating procedures

Sampling and packaging	DNA extraction	Library preparation	ccredited sequence provider	Bioinformatic pipeline	Selection and analysis of rDNA and mtDNA	in the second se
1	2	3	4	5	6	0
	and balay use of 10% core (from the ((proper)) ment (in the core of the core	3 (2) - 45 / 5031 - 4 / 6 / 6 / 6 / 6 / 6 / 7 / 7 / 7 / 7 / 7	and data in CLC and and the CLC States of the States of th	The standard of analysis of ana	Image:	and a set of select Angewide (and a set of select Angewide) (b) (c) (c

rtant to analyze anto (e.g. fungel a produce identic

Validating tests

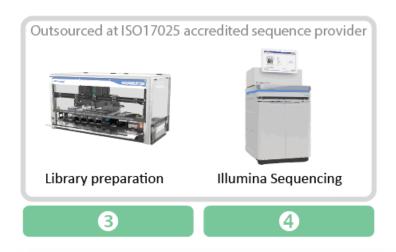
Why should we validate or verify?

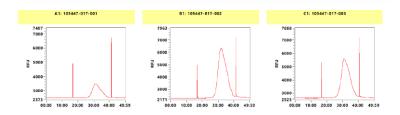
> To assess if a test is fit for purpose (scope)

How to validate or verify?

- Determination or verification of performance criteria (PM 7/98)
- Analytical sensitivity, Analytical specificity, Selectivity, Repeatability, Reproducibility
- > Well characterized biological material

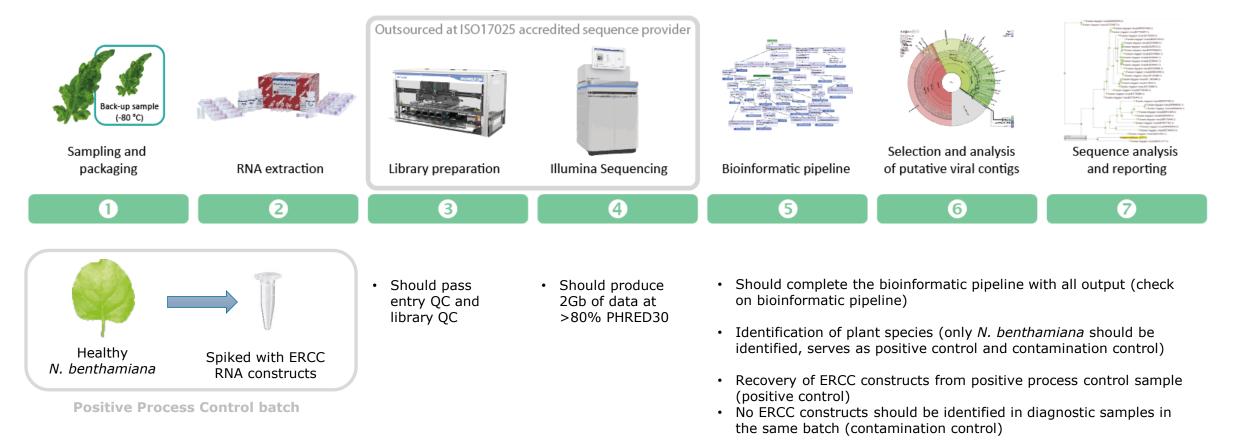
What to validate or verify?


 Well described analytical standard operating procedures (A-SOP)

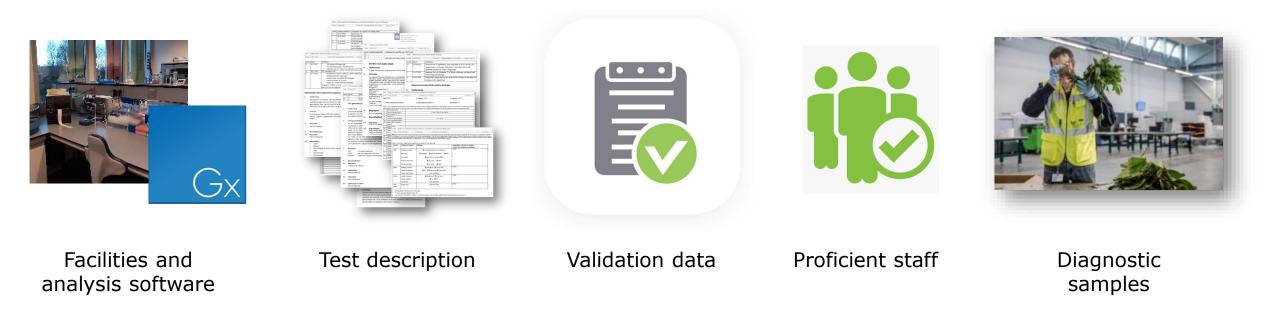


What about subcontracting?

- Illumina DNAseq and RNAseq data is outsourced to an ISO17025 accredited sequence provider
- Library prep and sequencing according to standardized procedure that is fit for purpose
- > Agreements on data yield and quality
- > No multiplexing with plant samples other customers
- Sequence data and quality control data provided to allow assessment of sequence run success
- One standardized control is included in each sequence batch which is processed like a regular sample from library prep to analysis report



This annex is valid from: 16-02-2023 to 01-04-2027 Replaces annex dated: 09-03-202					
No.	Material or product	Type of activity ¹	Internal reference number	Locatio	
b.	DNA or RNA (from prokaryotic or eukaryotic organisms)	adapter ligation rRNA depletion (m)RNA selection cDNA synthesis size selection fragmentation target capture PCR target amplification bisulfite conversion	GenomeScan SOP027/ SOP160/ SOP169/ SOP174/ SOP178 protocol producer *	LE	
1.	DNA or RNA (from prokaryotic or eukaryotic organisms)	Determination of nucleotide sequences; Next-Generation Sequencing (NGS)	GenomeScan SOP27/ SOP160/ SOP169/ SOP178 protocol producer *	LE	


One control to serve many purposes (example virology)

Assessment of rRNA depletion success (indicative)

External audit and accreditation

- > Eight years later all elements were present for two HTS tests: external audit requested
- > As of august 2022 NIVIP is able to perform two HTS tests under accreditation
- > New tests can be added using regular methodology of our flexible scope

Summary

- > High Throughput Sequencing is a powerful tool in plant health diagnostics
- Implementing the method is similar to implementing other methods but many aspects need to be covered
- The concepts for method, test and validation under a validation scope apply to HTS tests as well as any other molecular test
- Outsourcing data production to ISO17025 accredited sequence provider was accepted by Dutch accreditation board
- Discussions with our national accreditation board were very helpful in setting the stage for HTS in plant health diagnostics

Thank you for your attention

Entomology Tibor Bukovinszki Jan Mertens Cynthia Pronk

Nematology Gerrit Karssen Evelyn van Heese Anne Sophie van Bruggen Virology Annelien Roenhorst Marleen Botermans Pier de Koning

Molecular Biology

Aron van Duijnhoven Thijn van Kempen Tim Warbroek Lucas van der Gouw Michael Visser Marcel Westenberg

