The use of HTS in virology (NIB experience)

NATAŠA MEHLE, ANJA PECMAN, ANA VUČUROVIĆ, VERONIKA BUKVIČ, JAKOB BRODARIČ, IRENA BAJDE, MAJA RAVNIKAR, DENIS KUTNJAK

5th EPPO Workshop for Heads of Plant Pest Diagnostic Laboratories, 19th April 2023, Oeiras (PT)

NACIONALNI INŠTITUT ZA **BIOLOGIJO** NATIONAL INSTITUTE OF **BIOLOGY**

NATIONAL INSTITUTE OF BIOLOGY

- Independent public research institut
- Established by the Government of the Republic of Slovenia in 1960
- Basic, developmental and applicative research in the fields of biotechnology, biophysics, biomedicine and system biology
- ~190 employees

DEPARTMENT OF BIOTECHNOLOGY AND SYSTEMS BIOLOGY

- Detection of GMOs: 2004 ->
- Detection of plant pathogens: 2012 ->

Type of scope: FLEXIBLE

(possibility of introducing minor modifications to the method or additional parameters)

Method

Molecular methods:

- o qPCR
- RT-qPCR
- o PCR

Pathogen

- Xylella fastidiosa
- Clavibacter sepedonicus
- Ralstonia solanacearum
- Stolbur phytoplasma (BN, MR)
- Elm yellows phytoplasma (GFDP)
- 'Ca. P. mali' (AP)
- 'Ca. P. pyri' (PD)
- 'Ca. P. prunorum' (ESFY)
- ToBRFV
- Begomoviruses

Matrix

- Plants
- Seeds
- Insects

HTS from research to use for analysis of official samples

2012 ->

American Society for Microbiology Journal of Clinical Microbiology Volume 51, Issue 11, November 2013, Pages 3818-3825 https://doi.org/10.1128/JCM.01531-13

Virology

High Similarity of Novel Orthoreovirus Detected in a Child Hospitalized with Acute Gastroenteritis to Mammalian Orthoreoviruses Found in Bats in Europe

Andrej Steyer^a, Ion Gutiérrez-Aguire^{b,e}, Marko Kolenc^a, Simon Koren^c, Denis Kutnjak^b, Marko Pokorn^d, Mateja Poljšak-Prijatelj^a, Nejc Rački^b, Maja Ravnikar^{b,e}, Martin Sagadin^a, Adela Fratnik Steyer^a, and Nataša Toplak^c

Virus Research 191 (2014) 45-50

Contents lists available at ScienceDirect

Virus Research

journal homepage: www.elsevier.com/locate/virusres

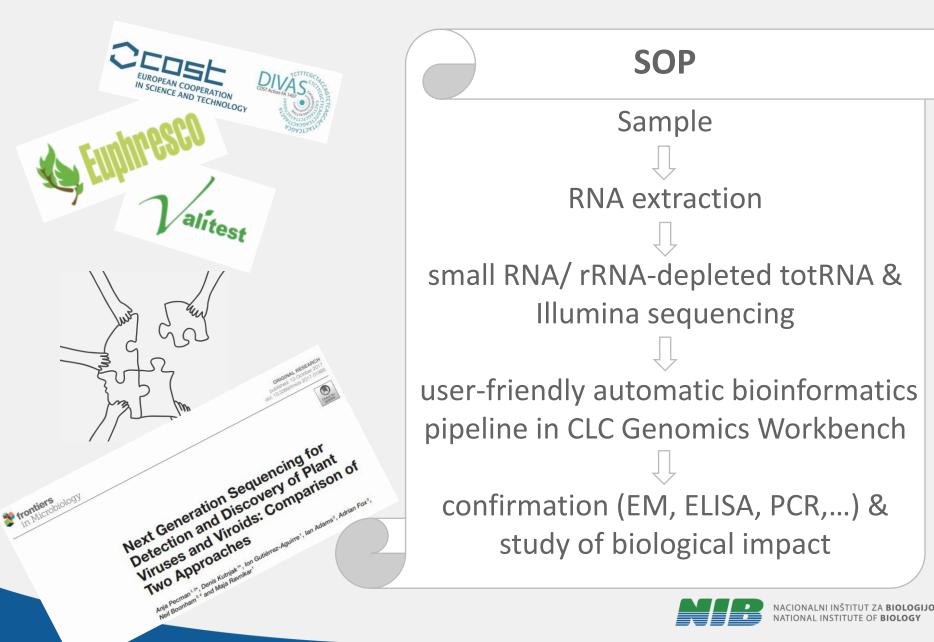
Short communication

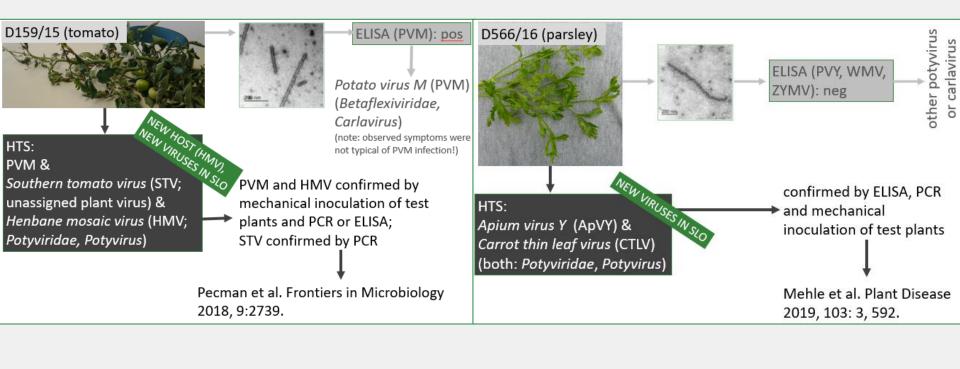
Complete genome sequences of new divergent potato virus X isolates and discrimination between strains in a mixed infection using small RNAs sequencing approach

Denis Kutnjak^a, Rocio Silvestre^b, Wilmer Cuellar^{b,1}, Wilmer Perez^b, Giovanna Müller^b, Maja Ravnikar^a, Jan Kreuze^{b,*}

GENETIC DIVERSITY AND EVOLUTION 1 May 2015 Volume 89 Issue 9 https://doi.org/10.1128/JVI.03685-14

Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population


Denis Kutnjak^{a,b}, Matevž Rupar^a, Ion Gutierrez-Aguirre^a, Tomaž Curk^c, Jan F. Kreuze^d, and Maja Ravnikar^a


NACIONALNI INŠTITUT ZA **BIOLOGIJO** NATIONAL INSTITUTE OF **BIOLOGY**

HTS from research to use for <u>analysis of official samples</u>

HTS for analysis of official samples

2015 -> 2016 analysis of **individual samples** with unknown symptoms


The costs per sample are too high!

NACIONALNI INŠTITUT ZA **BIOLOGIJO** NATIONAL INSTITUTE OF **BIOLOGY**

HTS for analysis of official samples

2017 -> 2021 analysis of **bulk samples** with the aim of finding out which viruses, in addition to the known ones, are present in the crops grown in Slovenia

WMV-2

ZYMV

HTS: WMV-2, ZYMV, Cucurbit aphid-borne yellows virus (CABYV)

> Analysis of each individual sample by CABYV specific RT-PCR CABYV: •

Mehle et al. Plant Disease 2020, 104:2, 599

2022 ->

. . .

Extension of national surveillance (monitoring) to several viruses listed in Annex II, Part A of (EU) 2019/2072

- Cowpea mild mottle virus CPMMV (Betaflexiviridae, Carlavirus)
- Lettuce infectious yellows virus LIYV (Closteroviridae, Crinivirus)
- Melon yellowing-associated virus- MYaV (Betaflexiviridae, Carlavirus)
- Squash vein yellowing virus SqVYV (Potyviridae, Ipomovirus)
- Tomato chocolate virus ToChV (Secoviridae, Torradovirus)
- Tomato marchitez virus ToMarV (Secoviridae, Torradovirus)
- Tomato mild mottle virus ToMMoV (Potyviridae, Ipomovirus)

Commission Notice on the implementation of Regulation (EU) 2017/625 of the European Parliament and of the Council (Official Controls Regulation) 2022/C 467/02

HTS yes, but:

- Only 10 bulk samples per year (2023: 7x bulk tomato samples, 3x bulk samples of Cucurbitacea)
- Results should be available in time!

HTS platform?

lllι

de

se

MinION direct

MinION cDNA-

PCR sequencing

RNA sequencing

	lumina	-		
umina rRNA-		Frontiers Frontiers in	Microbiology	ORIGINAL RESEARCH published: 11 May 2022 doi: 0.0389/micb.2022.883921
epleted totRNA equencing	totRNA	rRNA-depleted totRNA		Cipita dire

Systematic Comparison of Nanopore and Illumina Sequencing for the Detection of Plant Viruses and Viroids Using Total RNA Sequencing Approach

> Anja Pecman^{1,2*}, Ian Adams³, Ion Gutiérrez-Aguirre¹, Adrian Fox³, Neil Boonham⁴, Maja Ravnikar¹ and Denis Kutnjak^{1*}

Nanopore sequencing has been found to provide comparable results to Illumina sequencing, while being faster and better suited for small laboratories

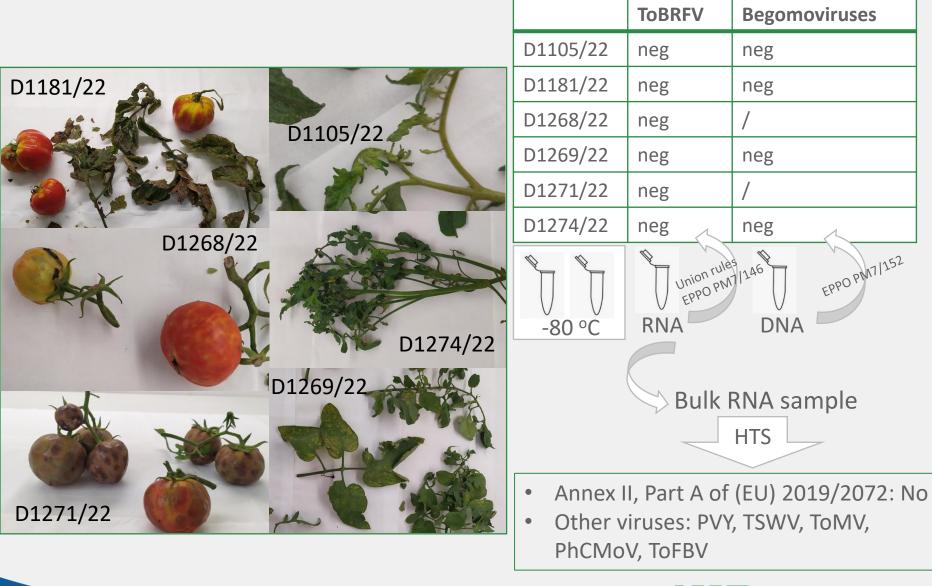
New SOP for HTS

	NAD5	Alien control	ERCC	RCS
RNA extraction	IPC	<i>Phaseolus vulgaris</i> infected with		
Bulk sample preparation				
DNase digestion		endornavirus PvEV		
Ribosomal RNA depletion, RNA concentration		(RNA extraction and all further steps in parallel	+: Spike-in ERCC control	
Polyadenylation (polyA tailing)				
 Library preparation: Reverse transcription and strand-switching PCR and barcoding Adapter ligation and library loading onto flowcell 	with samples) -: Monitoring contamination +: Ensuring	(Invitrogen) (control added to every sample and	+: RNA Control Expansion (Oxford Nanopore Technologies,	
MinION sequencing		detection of	PvEV)	UK)
Bioinformatic analysis for data visualisation: CLC Genomic Workbench (Qiagen, USA) (Pecman et al., 2017)		target (at low concentration)		

New SOP for HTS

One MinION flowcell:

- 5 bulk samples
- Each bulk sample: up to 6 samples


-> Results for up to 30 individual samples

	1	
Wet lab	MinION	Dry lab (bioinformatic analysis; 3 days):
(4 days)	sequencing	1. Review of controls (analysis of reads mapped to
	(weekend)	RCS, ERCC, and PvEV)
		2. Check for the presence of quarantine viruses
		(mapping to reference database with nucleotide
		sequences of all target quarantine viruses)
		3. Check for the presence of other known viruses
		4. Check for the presence of unknown/new viruses

If ≥ 1 read of virus from Annex II, Part A of (EU)
 > 2019/2072 is detected, individual samples will be tested with HTS or with target tests.

HTS for the analysis of samples from national monitoring

Full validation only for the detection of ToMMoV in tomato leaves

Analytical specificity: 100%	 A reference database of sequences of ToMMoV, BCTV, CPMMV, LIYV, MYaV, SqVYV, ToChV, and ToMarV has been created. Samples containing 2x ToMMoV, 1x BCTV, 1x CPMMV, 1x SqYV No. of samples that did not contain quarantine virus: 10 		
Analytical sensitivity	 ToMMoV dilutions tested: 6x, 10x, 30x, 60x, 100x and 1000x ➢ If more than 1,000,000 filtered reads are generated: 100x ➢ If 100,000 filtered reads are generated (the lowest acceptable output): 10x 		
Selectivity	ToMMV (dilutions 6x and 10x) spiked into leaves of different tomato cultivars no impact of tomato cultivars		
Repeatability: 100%	 ToMMoV 10x diluted: 2 parallel testing ERCC: 7 x 6 parallel testing 		
Reproducibility: 100%	 No. of MinION flowcells (run on different days): ToMMoV 10x diluted: 3 ERCC: 7; RCS: 4; PvEV: 8 No. of wet lab operators: 4; No. of dry lab operators: 3 		

