

Evaluating a Risk-Based Sampling Inspection Scheme for Plant Pests and Diseases on Mexican Produce Imported by Truck

Barney Caton, Darlene Judd, and Jacob Rodler

for

<u>Port-of-Entry Risk-Based Sampling Cross-Agency Workgroup</u> USDA, APHIS, Plant Protection and Quarantine DHS, Customs and Border Protection

Risk-Based Sampling Inspection

- Aims
 - $_{\odot}~$ Prioritize inspecting <u>higher risk</u> goods
 - $_{\odot}~$ Provide incentives, so importers voluntarily improve quality/reduce non-compliances
- Pros
 - Reduce resources used to inspect <u>lower risk</u> goods
 - $_{\odot}~$ (Long term) Change from 2% to hypergeometric sampling
- Cons (chiefly from inspectors)
 - \circ Hypergeometric sampling takes more time (larger *n* on average)
 - Increased leakage (passing infested lots)
 - Fewer detected pests/non-compliances

Skip-Lot Inspection

• Sampling

 $_{\odot}$ Lower frequency of inspection (<100%) for consistently compliant goods

 $_{\odot}$ No change in intensity of sampling

• Benefits

Large potential time savings (document checks; no unloading, etc.)

• Scheme set to desired average outgoing quality level (AOQL; Stephens, 2001)

Trial sampling scheme

Mexican Produce Trial

• Scope

 $\circ~$ Avocado, Celery, Papaya, Broccoli+Cauliflower

(others not reported here)

- $\circ~$ Regions: East (TX) and West (AZ and CA)
- Data coverage
 - $_{\odot}~$ Pre-trial: Jan 2017 to entry

• n = 29 for N = 1000

- \circ Trial
 - Avocado/Celery-East: Sept 2018 Dec 2020 [28 months]
 - Others: Jun 2019 Dec 2020 [19 months]
- Hypergeometric sampling (*C* = 0.95, *r* = 0.10)

Program management

- Pre-arrival
 - $_{\odot}$ Electronic consignment information
 - Identify eligible lots via user-defined customs rules
 - Lots selected for inspection at random or passed, based on RBS status
- Post-inspection
 - Commodity RBS status managed manually
 - \circ Daily updates

Results: Dynamic action and inspection rates

Results: Pest action rates

Concern: "We won't find as many pests!" **Outcomes**: No changes to most but some *increased*

Results: Leakage rates

Concern: "RBS will let pests in!"

Outcomes: Leakage increased—as expected—but only slightly

Commodity	Region	Phase	Leakage rate	Passed lots per leak
Avocado		Pre-trial	0.00	—
		Trial	0.0004	2,266.0
Broccoli+Cauliflower	East	Pre-trial	0.0025	400.0
		Trial	0.026	27.1
	West	Pre-trial	0.00	—
		Trial	0.003	318.3
Celery	East	Pre-trial	0.031	32.3
		Trial	0.053	18.8
	West	Pre-trial	0.00	
		Trial	0.044	18.5
Papaya	_	Pre-trial	0.00	
		Trial	0.002	466.4

Results: Time savings

Outcomes: Substantial savings, even for most higher risk goods

Commodity	Region	Phase	Mean time (h per mo)	Proportional savings
Avocado		Pre-trial	1,661.1	
		Trial	450.8	0.729
Broccoli+Cauliflower	East	Pre-trial	1,219.4	
		Trial	645.5	0.471
	West	Pre-trial	267.9	
		Trial	125.1	0.533
Celery	East	Pre-trial	125.4	
		Trial	160.0	-0.276
	West	Pre-trial	197.3	
		Trial	78.0	0.605
Papaya		Pre-trial	272.4	
		Trial	82.7	0.696

Conclusions (1/2)

- Sampling scheme effectiveness and efficiency
 - $_{\odot}$ Concerns were not observed
 - Action rates did not greatly decrease
 - Leakage did not greatly increase
 - Observed time savings of 50-70 percent for most commodities/regions
 - [Not shown] Variable effects on pest taxonomic diversity (one *increase*)

Conclusions (2/2)

- Program management
 - $_{\odot}$ Useful and effective scheme in trial; ongoing "program" now
 - $_{\odot}$ Manually adjusting statuses/targeting rules was effective
 - $_{\odot}$ "Monitoring" scheme was valuable
- Potential improvements
 - o Managing status of producers probably more ideal
 - Broader use requires technological changes (automation)
 - Enacted by CBP for maritime pineapple from Costa Rica (test case)
 - Ongoing modifications will broaden pathway utility

Thank you and Reminder

 Guidance on creating RBS programs
 <u>BP Caton & AP Robinson</u> (2022). How to Design,
 Implement, and Maintain a New Risk–Based Sampling
 Program. In Risk–Based Sampling Manual – Part II (pp. 48– 107). North American Plant Protection Organization (NAPPO), Raleigh, NC, USA