An Integrated Pest management Strategy for pollen beetle in oilseed rape: Are we nearly there yet?

Sam Cook
Rothamsted Research, UK
Integrated Pest Management (IPM) for pollen beetle in oilseed rape

To B(rassicogethes), or not to B(rassicogethes): that’s the question;

Whether 'tis nobler in the mind to suffer the slings and arrows of outrageous fortune, Or to take arms against a sea of troubles, And by opposing end them? (Hamlet)

Should we accept this or fight it?

Who cares?
"A rose by any other name would smell as sweet’ (Romeo & Juliet)

This is unnecessary over splitting of the genus and will lead to confusion (and Romeo & Juliet didn’t end well!)

Sam Cook, Rothamsted Research
Integrated Pest Management (IPM) for pollen beetle in oilseed rape

The name change has not been accepted by National Biodiversity network NHM (UK) BUT term becoming more widely accepted (EPPO included).

So, do I have to accept this? Do we accept this??

If so then I’m extremely sad to announce the demise of *Meligethes aeneus* – but perhaps we’ll have more luck controlling *Brassiocogethes aeneus*?!

William Shakespeare, 1564 - 1616

Meligethes aeneus (Fabricius 1755) Stephens 1830- 2016

Sam Cook, Rothamsted Research
Integrated Pest Management (IPM)

• IPM is an effective and environmentally sensitive approach to pest management that relies on a combination practices (including the judicious use of pesticides)

• 4 usual steps in IPM programmes:
 1. Set action threshold
 2. Monitor pest density & assess risk
 3. Prevention – cultural methods e.g. crop rotation, use of pest-resistant cultivars, semiochemical e.g. pheromone repellents, habitat diversification intercropping, trap cropping
 4. Control – mechanical (e.g. trapping), biological, conservation biocontrol, botanical insecticides, synthetic pesticides
Pollen beetle (*Brassicogethes* / *Meligethes aeneus*)

Life Cycle: univoltine
Pollen beetle (*Brassicogethes* / *Meligethes aeneus*)

Damage

- Adult feeding damage at bud stage causes abscission ‘blind stalks’

 Untreated vs. treated
Pollen beetle (*Meligethes aeneus*)

Damage

- Adult feeding damage at bud stage causes abscission ‘blind stalks’
- Pyrethroid resistance widespread across Europe
- Loss of control resulted in complete loss of 30,000ha (€22-25 M) in Germany 2006
- Indoxacarb, neonicotinoids (thiacloprid acetamiprid) & Pymetrozine currently viable alternatives
1. Set Action Thresholds

E.g. Reevaluation of threshold for pollen beetle (UK)
AHDB Project 495 (Ellis & Berry, 2014)

Previous to 2012 UK threshold 15 beetles/plant or 5 for backward crops (GS 50-61)
- Logic: 1) calculate the number of flowers that can be lost by plants to pollen beetles and still produce maximum yield (1 beetle damages 9 buds/season)
- 2) The number of ‘excess flowers’ could be predicted by # plants/m² at the bud stage. Crops with fewer plants/m² had more excess flowers than more dense crops
1. Set Action Thresholds

Threshold for pollen beetle (UK) now based on plant density as well as number of pollen beetles/plant

<table>
<thead>
<tr>
<th>Plant Density</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 30 plants/m²</td>
<td>25 pollen beetles per plant</td>
</tr>
<tr>
<td>30–50 plants/m²</td>
<td>18 pollen beetles per plant</td>
</tr>
<tr>
<td>50–70 plants/m²</td>
<td>11 pollen beetles per plant</td>
</tr>
<tr>
<td>more than 70 plants/m²</td>
<td>7 pollen beetles per plant</td>
</tr>
</tbody>
</table>

Photo © Alan Dewar, Dewar Crop Protection
1. Set action thresholds - Pyrethroid use in UK

Pollen beetle populations are usually below UK spray thresholds (15 beetles/plant) - only rarely reach threshold for backward crops (5 beetles/plant)

Defra data - collected through FERA's CropMonitor project
1. Set action thresholds - Pyrethroid use in UK

...But spring insecticide use is increasing (main target: pollen beetle)!
So thresholds not being used.. Why not?
2. Monitor pest density & assess risk

Advice:

- Crops at risk during green-yellow bud phase
- Risk of immigration on dry days when temperatures > 15 °C
- Pollen beetle spray threshold = 15/plant (average)
- Pest sampling protocol: ‘...10 plants sampled along a 30m transect across the field. Each transect should start at the headland and go diagonally across the field, choosing a plant at random every couple of metres’
2. Monitor pest density & assess risk

- Monitoring procedure is time consuming
- Pollen beetle immigration occurs over 2-6 week period

A baited monitoring trap will help growers & advisers to more easily and more accurately identify when spray thresholds have been breached than by plant scouting methods.
2. Monitor pest density & assess risk

Monitoring methods: Developing a monitoring trap for pollen beetle colour

Cook, Skellern, Döring & Pickett (2013) *Arthropod-Plant Interactions* 7:249–258

2. Monitor pest density & assess risk

Monitoring methods: *Developing a monitoring trap for pollen beetle*

Volatile lure

- Lure derived from OSR host plant volatiles (in the absence of pheromones)
- 15 electrophysiologically active volatiles identified
2. Monitor pest density & assess risk

Monitoring methods: *Developing a monitoring trap for pollen beetle*

- In replicated field experiments 2008-2011, Phenylacetaldehyde performed most consistently and was chosen for further development as the lure for the field trap
2. Monitor pest density & assess risk

Monitoring methods: *Developing a monitoring trap for pollen beetle*

Spring 2013 - Commercially available from Oecos www.oecos.co.uk

- Good indication of when beetles are moving but not currently adequately calibrated to allow threshold determination 😞

- Best to site traps facing upwind but located downwind of prevailing wind (usually NE side of field) most effective

[Image of monitoring trap in a field]

Skelern, Welham, Watts & Cook (2017) Agriculture, Ecosystems & Environment 24: pp.150-159...
2. Monitor pest density & assess risk

• Does it *really* matter where in the field the transect sampling is done?

• Need to understand:
 - spatio-temporal abundance and distribution of pollen beetle
 - how this relates to plant density and crop growth stage

• 3 fields at Rothamsted divided into grid 16 x 16m
• 3 plants in each zone sampled 3/week 9 March – 27 April
2. Monitor pest density & assess risk
2. Monitor pest density & assess risk

<table>
<thead>
<tr>
<th>Field</th>
<th>Plants/m²</th>
<th>Distance from crop edge</th>
<th>Transect mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td>1-10 m</td>
<td>10-20 m</td>
</tr>
<tr>
<td>Great Harpenden¹</td>
<td>NE</td>
<td>27 (25)</td>
<td>33 (18)</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>27 (25)</td>
<td>25 (25)</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>22 (25)</td>
<td>32 (18)</td>
</tr>
<tr>
<td>Whole field average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Hoos²</td>
<td>NE</td>
<td>29 (25)</td>
<td>6 (25)</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>61 (11)</td>
<td>11 (25)</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>30 (18)</td>
<td>11 (25)</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>58 (11)</td>
<td>10 (25)</td>
</tr>
<tr>
<td>Whole field average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Knott ¹³</td>
<td>NE</td>
<td>35 (18)</td>
<td>44 (18)</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>40 (18)</td>
<td>39 (18)</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>60 (11)</td>
<td>54 (11)</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>32 (18)</td>
<td>31 (18)</td>
</tr>
<tr>
<td>Whole field average</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Plant density varies within field so threshold varies according to position of sample

Sam Cook, Rothamsted Research
2. Monitor pest density & assess risk

- Pollen beetle spatio-temporal abundance highly variable
2. **Monitor pest density & assess risk**

Real-time monitoring of insect pests is needed!

- Machine learning enables detection and recognition of insect species
- Camera traps being developed
- LIDAR (Light Detection and Ranging (LIDAR) ‘laser’ sensor technology being tested to detect OSR pests & beneficials
2. Monitor pest density & assess risk

expert.com on-line risk assessment tool for: pollen beetle
Predicts: start of migration, peaks in migration, end of migration
2. Monitor pest density & assess risk

- Trapping data from 178 crops across UK over 4 years
- proPlant can accurately forecast start, peaks (risk periods) and end of immigration;
- Focussing monitoring effort to when it is most needed, reducing it by half cf. rule based advice

2. Monitor pest density & assess risk

ProPlant tool now available free to UK growers via Bayer Pollen Beetle Predictor

www.bayercropscience.co.uk/

Immigration start

Immigration risk

% completion
3. Prevention

Cultural methods

• Crop Management
 Reviewed by Skellern & Cook - coming soon in special issue on Pollen beetle in Arthropod-Plant Interactions
3. Prevention

Cultural methods

• Use of pest-resistant cultivars

In research pipeline - Reviewed by Hervé & Cortesero (2016) APIS 6: 463-475
3. Prevention: Use of pest resistant cultivars

Manipulation of petal colour – red oilseed rape

- Pollen beetles are attracted to ‘yellow’; Cultivars with petal colour other than yellow are less attractive!

3. Prevention: Use of pest resistant cultivars

Manipulation of petal colour – red oilseed rape

- Attracted to ‘yellow’; Cultivars with petal colour other than yellow are less attractive!
3. Prevention: Use of pest resistant cultivars

Reduction of attractive plant volatiles

- Attracted to host plant volatiles including isothiocyanates (breakdown products of glucosinolates)

Alkenyl GS → 3-butenyl isothiocyanate
Indolyl GS do not catabolise to form stable ITC

3. Prevention: Habitat diversification

Cultural methods

- Habitat diversification
 Reviewed by Skellern & Cook coming soon in special issue on Pollen beetle in Arthropod-Plant Interactions

Trap cropping
3. Prevention: Habitat diversification - trap cropping

Turnip rape (*Brassica rapa*) trap crop

More attractive than oilseed rape for pollen beetles

- early flowering nature
- more attractive scent (e.g. phenylacetaldehyde)

Cook et al., 2006; *Ent. Exp. Appl.* 119:221-9
Cook et al., 2007 *Arthropod-Plant Interactions* 1:57-67
3. Prevention: Habitat diversification (intercropping, cover crops, mixed cropping, **trap cropping**)

Replicated field plots

Pollen beetles can be reduced to below spray thresholds in plots with early flowering trap crops
Whole field experiments successful ... But cost:benefit analysis revealed current system NOT currently economically viable for conventional growers (UK)

Cook et al (in prep)
3. Prevention: Use of semiochemicals

- **Non-host volatiles as repellents** *e.g. Lavendula angustifolia*

 Essential oil

 Cook & Mauchline *in prep*

 Successful at field trial stage; limitations are cost and formulation
4. Control

- Mechanical e.g. trapping (commercialized)

http://www.csalomontraps.com/
4. Control: Bio-insecticides

Commercialized

Spinosad insecticide active via contact/ingestion based on chemical compounds found in the bacterial species *Saccharopolyspora spinose* (not in EU)
4. Control: Bio-insecticides

In research pipeline

- Entomopathogenic fungi
e.g. *Metarhizium anisopliae*, *Beauveria bassiana*

- Pathogenic nematodes
e.g. *Steinernema feltiae*
4. Control: Botanical insecticides

Commercialized
Pyrethrum

Research pipeline:
Neem

Carum carvi
Thymus vulgaris

Pavela (2011) Industrial Crops and Products 34:888-892

CARE!
Many are broad spectrum!
4. Control: Conservation biocontrol

- 80% biocontrol
- Overwinter as cocoons in soil; susceptible to tillage
4. Control: Conservation biocontrol

Conservation biocontrol of parasitoids of OSR pests via field margins designed to deliver biocontrol:

Inclusion of *Brassica napus* subsp. Biennis Forage rape

Good to support populations of parasitoids of pollen beetles, seed weevils and pod midge

Skellern & Cook et al., Submitted

Sam Cook, Rothamsted Research
Yes we’re nearly there! (but not quite....)

1. Set action threshold
2. Monitor pest density & assess risk
3. Prevention()
4. Control ()
Acknowledgements

Rothamsted Colleagues
John Pickett
Ingrid Williams
Matthew Skellern
Andrew Ferguson
Nigel Watts
Lesley Smart
Christine Woodcock
Janet Martin
Lucy Nevard

Project partners
- Darren Murray (VSN International)
- Thomas Döring
- Peter Taylor
- Eileen Bardsley
- Michael Tait
- Jackie Davies
- Andreas Johnen

Judith Pell (JK Pell Consulting)

Thank you for listening!

Funders:

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement n°265865- PURE

Department for Environment, Food & Rural Affairs

20 Years of Pioneering Great British Bioscience

Cereals & Oilseeds

AHDB
17th Biannual Meeting
September 2018, Zagreb, Croatia (17-19th)

Subgroup Phytopathology
malgosia_jedryczka@poczta.onet.pl

Subgroup Entomology
sam.cook@rothamsted.ac.uk

http://wwwuser.gwdg.de/~iobc/index.html