

Effects of insecticide applications on population development of pollen beetle in field studies

Meike Brandes, Udo Heimbach & Bernd Ulber

Julius Kühi

Introduction

Neonicotinoid Biscaya (a.i. thiacloprid, 72 g ha⁻¹)

Pyrethroid Karate Zeon (a.i. lambda-cyhalothrin, 7.5 g ha⁻¹)

Pyrethroid Mavrik (a.i. tau-fluvalinate, 48 g ha⁻¹)

Effects on:

overwintered pollen beetles

bud infestation with eggs

L1- and L2-larvae of pollen beetle

- parasitism rates of pollen beetle larvae by the parasitoids
 Tersilochus heterocerus and Phradis spp.
- new generation of pollen beetles

Materials and Methods

Overwintered PB 2013-15 Julius Kühn-Institur Federal Research Centre for Cultivated Plant

Pollen beetles per main stem after 1st application at BBCH 53/55

Year	Treatment	1 DAA mean ± SE	3 DAA mean ± SE	7 DAA mean ± SE)5)
	Control	2.7 ± 0.2 A	9.5 ± 0.5 A	5.6 ± 0.2 A	(GLMM. p ≤ 0.05)
2013 BBCH	BISCAVA BRCH 53	1.4 ± 0.1 B	6.4 ± 0.4 A	5.0 ± 0.3 A	M.
556.1	Karate Zeon	2.8 ± 0.2 A	9.0 ± 0.4 A	5.3 ± 0.2 A	(GLN
204	Control	1.3 ± 0.1 A	0.9 ± 0.1 A	0.5 ± 0.1 A	
2014 BBCH	Riscava BBCH 55	0.4 ± 0 B	0.4 ± 0.1 B	0.4 ± 0.1 A	
	Mavrik	0.2 ± 0 B	0.4 ± 0 B	0.5 ± 0.1 A	
	Control	1.5 ± 0.1 A	1.3 ± 0.1 A	1.1 ± 0.1 A	
2015 BBCH	Biscava BBCH 55	0.5 ± 0.1 B	0.3 ± 0 B	0.3 ± 0.1 B	
BBCIT	Mavrik	0.1 ± 0 C	0.1 ± 0 C	0.5 ± 0 B	

Similar results after 2nd/3rd application at BBCH 60/62 and 65

Bud infestation (main stem)

Egg infested buds > 2 mm in field trials: 1-2, 7-9 and 14 DAA at BBCH 53/55

Year/ Application	Treatment	1-2 DAA mean (%) ± SE		7-9 DAA mean (%) ± SE		14 DAA mean (%) ± SE		5)
	Control	21.2 ± 2.3	AB	41.5 ± 2.4	Α	-		≤ 0.05)
2013 BBCH 53	Biscaya	20.0 ± 2.4	Α	17.8 ± 2.0	В	-		IM, p
2201133	Karate Zeon	31.0 ± 2.8	В	43.7 ± 3.8	Α	-		(GLMM,
	Control	0.7 ± 0.2	Α	5.1 ± 0.8	Α	3.9 ± 0.7	Α	
2014 BBCH 55	Biscaya	3.4 ± 1.1	Α	1.0 ± 0.2	В	0.6 ± 0.3	В	
	Mavrik	2.6 ± 1.3	А	1.8 ± 0.6	В	1.9 ± 1.4	AB	
	Control	8.3 ± 1.2	Α	12.7 ± 4.4	Α	20.0 ± 2.2	Α	
2015 BBCH 55	Biscaya	8.1 ± 1.7	А	10.0 ± 1.9	Α	3.6 ± 0.5	В	
223.133	Mavrik	7.0 ± 1.8	Α	7.4 ± 2.1	Α	5.8 ± 1.0	В	

Similar results for the side shoots

Trials with 8 different treatments

Plants: PB:

untreated untreated

Biscaya treated Biscaya treated Mavrik treated Mavrik treated

- 10 plants/treatment
- 10 PB/plant caged with plastic bags
- After 3-4 d assessment of vitality and end of the trial

Meike Brandes

Greenhouse trials 2013-14

Egg infested buds > 2 mm (main stem) in greenhouse trials

Treatment	2013 mean (%) ± SE	2014 mean (%) ± SE
Untreated plants without PB (preinfestation)	15 ± 2 AC	2 ± 1 A
Untreated plants + untreated PB	54 ± 5 B	25 ± 3 B
Untreated plants + Mavrik treated PB	not assessed	24 ± 3 B
Untreated plants + Biscaya treated PB	48 ± 6 B	23 ± 6 B
Biscaya treated plants + untreated PB	8 ± 5 A	6 ± 2 A
Biscaya treated plants + Biscaya treated PB	14 ± 4 C	17 ± 3 B
Mavrik treated plants + untreated PB	not assessed	20 ± 4 B
Mavrik treated plants + Mavrik treated PB	not assessed	23 ± 4 B

Similar results for the side shoots

Dropping of L1-larvae 2013-15 Julius Kühn-Institut Federal Research Centre for Cultivated Plants

L1-larvae per m², summed up over 14 DAA

Dropping of L2-larvae for pupation

Parasitization

Phradis spp. und Tersilochus heterocerus

New generation PB

Summary

Overwintered pollen beetles:

Biscaya and Mavrik reduced pollen beetle density up to 7 DAA, Karate Zeon had no effect

Bud infestation with eggs:

Biscaya: Ø 84% efficacy in the field; confirmed in greenhouse trials, Mavrik: Ø 61% efficacy in the field; not confirmed in the greenhouse Karate Zeon had no effect

L1-larvae of pollen beetle:

Biscaya application at BBCH 62/65 : significant effects on L1-larvae Mavrik + Karate Zeon: effects on L1-larvae were missing

• L2-larvae and new generation of pollen beetles: the number of offspring was reduced by insecticides (except Karate Zeon)

Conclusion

- Biscaya and Mavrik reduced population growth of pollen beetle without affecting parasitism rates of larvae
- In addition to damage control Biscaya showed effects on population development that are not assessed during the usual efficacy evaluation of insecticides according to EPPO
- Additional effects on insect pest population development should be taken into account for sustainable IPM strategies
- Insecticides that prevent crop damage, reduce the number of offspring and as well do not harm beneficial organisms should be preferred for IPM, resulting in a lower need for insecticide treatments

Meike Brandes

Thank you for your attention!

Parasitization 2015

Tersilochus heterocerus

Parasitization 2015

Phradis spp.

