

Potential of spiral plating and digital real-time PCR for improved seed health testing

Manca Pirc (manca.pirc@nib.si), Maja Ravnikar, Tanja Dreo

Xanthomonas campestris pv. campestris

http://www.apsnet.org/edcenter/advanced/topics/Pages/Xanthomo

Disease: Black rot The most destructive disease of crucifers

Hosts:

Members of the plant family *Brassicaceae* as cabbage, broccoli, cauliflower, kale, turnip, oilseed rape, mustard, radish,...

Symptoms:

V-shaped chlorotic to necrotic lesions extending from the leaf margins and blackening of vascular tissues, wilting, stunted growth, and stem rot symptoms

Prevention:

Using disease-free seed

Xcc and current methods in seed testing

International Rules for Seed testing 7-019a: Detection of *Xanthomonas campestris* pv. *campestris* on *Brassica* spp.

Extraction

Soaking with prechilled sterile saline with Tween 20 on shaker for 2.5 h

Confirmation of pathogenicity

Inoculation by stabbing major leaf veins by suspected isolates

ISTA, 2015

Dilution plating on semi-selective media

Fs agar medium

mCS20ABN agar medium

Identification of isolates with multiplex PCR (two options)

Option 1

ISTA, 2015 Option 2

Real – time PCR for detection Xc from brassicas (Berg et al, 2006)

- Target on hrpF gene
- Multiplex assay with internal control that applify DNA from Brassica spp
- Detect also other related pathovars

Seed – qPCR (Laala et al, 2015)

- Primers and probes based on Berg et al. 2006)
- Germination of seeds before **aPCR**

Challenges in seed testing

Dilution plating

- Strain variation Some strains don't grow –recovery rates vary
- Post-harvest seed treatments (Chemical, biological control)
- Age of seed lot
- Microflora may inhibit growth natural antibiotic production

Molecular methods based on polymerase chain reaction

- Inhibitors present in/on seeds that inhibit reaction
- Many different DNA extraction methods but not all are appropriate for the seeds
- False positive results if primers/probes are not specific enough or false negative if are too specific
- High background

Droplet dPCR workflow

Signal readout

Droplet dPCR benefits

- Absolute quantification no need for standard curves
- Improved sensitivity (rare event detection!)
- Better signal to noise ratio
- Less sensitive to inhibition
- Absolute quantification even at low levels
- Validation of in-house reference materials

Anal Bioanal Chem (2014) 406:6513-6528 DOI 10.1007/s00216-014-8084-1

PAPER IN FOREFRONT

Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot

Tanja Dreo • Manca Pirc • Živa Ramšak • Jernej Pavšič • Mojca Milavec • Jana Žel • Kristina Gruden Rački et al. Plant Methods (2014) 10:42 DOI 10.1186/s13007-014-0042-6

METHODOLOGY

Open Access

Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples

Nejc Rački^{*}, Tanja Dreo, Ion Gutierrez-Aguirre, Andrej Blejec and Maja Ravnikar

Spiral plating

Eddy jet 2 (IUL Instruments)

Linear mode 50μL 2,4x

	V (μL)
4a	8,33
4b	8,34
4c	8,33
3a	8,33
3b	8,34
3с	8,33

E-mode 50μL 16,7x

	V (μL)
4a	17,68
4b	11,96
4c	8,28
3a	5,64
3b	3,88
3c	2,56

Slow 3000 mode 50μL 41,5x

	V (μL)
4a	19,88
4b	11,84
4c	8,20
3a	5,36
3b	3,56
3c	1,16

Potential of automatisation

Colonies can be counted manually or automatic

Manually

Automatically

Design of the experiment I

3 different cultivars of untreated seeds of cabbage (*Brassica* oleracea L var capitata)

Molecular methods

Two different starting volumes were tested

1000 μL

+ 10 min 10.000 g

DNA extraction

Quick Pick Plant kit Bionobile Dilutions: 0x, 10x

- 1. Modified qPCR according to Berg et al, 2006
 - different volume (10 µL reactions; 8+2)
 - different primer and probes concentration
 - different mastermix and cycling contitions, anneling T remain 60°C
 - 3 repetitions per sample
- 2. Droplet digital PCR (Biorad QX 100)
 - reaction volume (20 μL reactions 12+8)
 - different mastermix and cycling contitions, anneling T remain 60°C
 - 1 reaction per sample

Design of the experiment II

Adaptation of qPCR and transfer to droplet dPCR

DNA dilution of *Xcc* suspension (10⁸- 10¹ cfu/mL)

$$E = 10^{-\frac{1}{s}} - 1$$
$$E = 99,4\%$$

DNA dilution of *Xcc* suspension (10⁷- 10² cfu/mL)

Sample	Conc(copies/ µL)	Copies/20µL Well	cps/mL
10 ⁷ cfu/mL	2332	46640	6E+06
106 cfu/mL	229	4580	6E+05
10 ⁵ cfu/mL	22	440	6E+04
10 ⁴ cfu/mL	1,7	34	4E+03
10 ³ cfu/mL	0,16	3,2	4E+02
10 ² cfu/mL	0	0	0E+00

Results of seed testing - qPCR

100μL

1000µL

Increased sensitivity with higher volume

Increased inhibition in qPCR reaction

Results of seed testing – droplet dPCR

$100 \mu L$

ļ	Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
	Cultivar 1 0x	1477	29540	4E+06	POS
	10x	163	3260	4E+05	100

Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
Cultivar 2 0x	9,7	194	2E+04	POS
10x	1,2	24	3E+03	

Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
Cultivar 3 0x	0	0	0E+00	NEG
10x	0	0	0E+00	NEG

100μl 1000μl **1000μ**L

Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
Cultivar 1 0x	4100	82000	1E+07	POS
10x	1585	31700	4E+06	F03

Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
Cultivar 2 0x	100	2000	3E+05	POS
10x	11,3	226	3E+04	100

Sample	Conc(copie s/µL)	Copies/20µ LWell	cps/mL	Result
Cultivar 3 0x	0,15	3	4E+02	POS
10x	0,07	1,4	2E+02	100

Results of seed testing - plating

	mCS20ABN agar medium			Fs agar medium			
	Dilution plating 100µL	Eddy Jet E- mode 50µL 1.	Eddy Jet E- mode 50µL 2.	Dilution plating 100µL	Eddy Jet E- mode 50µL 1.	Eddy Jet E- mode 50µL 2.	
Cultivar 1 0x	1	11	5	7	3	1	
10x	4	1	1	0	2	0	
100x	0	0	0	0	0	1	
Cultivar 2 0x	0	0	0	1	0	0	
10x	0	0	0	0	0	0	
100x	0	0	0	0	0	0	
Cultivar 3 0x	0	0	0	0	0	0	
10x	0	0	0	0	0	0	
100x	0	0	0	0	0	0	

FS agar medium

Conclusions I

- With qPCR and droplet dPCR Xc was detected in seed of all three cultivars
- From two out of three cultivars we isolated Xcc suspected colonies.
- One cultivar was positive only with the molecular methods and only if DNA was extracted from 1000 μL
- Level of seed contamination ranged from 10⁷ 10² copies/mL as determined with droplet dPCR
- Spiral plating with further optimization and validation can be promising technique without preparation dilutions (150 mm plates)

Conclusions II

- qPCR was successfully transferred to droplet dPCR
- Sensitivity of qPCR and droplet dPCR tested on diluted DNA of Xcc suspension was comparable (3 vs 1 reaction)
- Despite high concentration of bacteria determined with the droplet dPCR few bacteria grew on the semiselective media (live/dead differentiation)
- As expected with higher volume of sample the sensitivity is increased but also inhibition in qPCR is greater. In droplet dPCR inhibition was not present or was much lower

Acknowledgements

- Slovenian phytosanitary administration
- NIB Bacteriological team for support and technical assistant

Thank you for your attention

