

New diagnostic tools for improved diagnostics of grapevine phytoplasmas

<u>Mehle Nataša</u>, Ravnikar Maja, Kogovšek Polona, Jakomin Tjaša, Pugelj Anja, Dermastia Marina

natasa.mehle@nib.si

Phytoplasma

- cell wall-less Gram positive bacteria
- class Mollicutes
- cell and genome size are the smallest among bacteria
- obligate intracellular parasites
- Transmitted:
- phloem-feeding leafhoppers, planthoppers and psyllids
- dodder, micropropagation, grafting and cutting
- >1000 diseases

phytoplasmas in phloem sieve element

Photo: Magda Tušek Žnidarič

Grapevine yellows

- caused by different phytoplasmas (different vectors)
- indistinguishable by symptoms

AY & Slovenia: ΒN neg -'*Ca.* P. solani' -> **BN** 0,0,4% 18% 0.04% - Flavescence dorée phytoplasma -> FD **BN &**_ FD -'*Ca.* P. asteris' -> **AY** FD 9% 2% BN 71%

2005-2015 (2234 samples)

Limitations of phytoplasma detection

the smallest by size and genome
routinely uncultivable -- traditional diagnostic methods suitable for bacteria
uneven distribution in the phloem (vascular tissue in stem, leaves, roots)
low concentration
variations in titer according to the season/plant organ

FD is listed in the EU2000/29 Council Directive on Harmful organisms and the A2 quarantine list of pests of EPPO: the destruction of diseased stocks, plants showing symptoms and surrounding plants is mandatory.

Example: FD – Izola

Reliable, sensitive and fast diagnostic procedure is needed!

Diagnostic procedure

The validation data about this method is available at EPPO website: <u>http://dc.eppo.int/validationlist.php</u>

Diagnostic procedure

Р	F K P F	qPCR	D	+ less o	cont	ar	nina	tion,	h	higher	sens	sitivi	ty	
Ρ	N2	СТАВ	AGE	3x PCR	AGE	D	2x nPCR	AGE	D	nPCR	AGE	RLFP	PAGE	D
1	st day	/	2	nd day			3rd da	ıy		41	th day		5th da	y

LAMP: Loop mediated isothermal **AMP**lification

-Relatively simple

Principle of loop-mediated isothermal amplification (LAMP) method. (Tomita et al., 2008, Notomi et al., 2000).

Detection of LAMP products

LAMP product on gel
 Turbidity

LFD

Fluorescence

- Real time
 - Intercalating dye (!)
 - Fluorescent probes

Simultaneously heater and fluorimeter (e.g., Geniell/III, SmartCycler)

Real time detection of LAMP products

1) **READING RESULTS**

pos: rise of fluorescence neg: no rise of fluorescence

2) **CONFIRMATION OF RESULTS** Melting temperature of the final product is pathogen specific

Legend:

- positive control (amplification-> rise of fluorescence)
- sample (comparable to positive control)
- negative control (no amplification-> no fluorescence)

LAMP detection of phytoplasmas FD and BN

- FDp:

Plant Pathology (2015) 64, 286-296

Doi: 10.1111/ppa.12266

LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine

P. Kogovšek^{ab}*, J. Hodgetts^c, J. Hall^c, N. Prezelj^a, P. Nikolić^a, N. Mehle^a, R. Lenarčič^a, A. Rotter^a, M. Dickinson^d, N. Boonham^c, M. Dermastia^a and M. Ravnikar^a

*Department of Biotechnology and Systems Biology, National Institute of Biology; ^bDepartment of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; ^cThe Food and Environment Research Agency, Sand Hutton, York YO41 1LZ; and ^dSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK

-BNp:

Euphresco GRAFDEPI 2

On-site application of the FDp and BNp testing

Amplification & Detection

Comparison of time needed for FDp and BNp detection with different methods

LAMP – validation (FD example)

Dilution	FDp DNA copy no.	Extraction of DNA with KingFisher + qPCR (Cq)	LAMP (Tp)
Зx	243-729	+ (27.9)	+ (21.1)
9x	81-243	+ (29.5)	+ (27.3)
27x	27-81	+ (31.4)	+ (25.0)
81x	9-27	+ (32.9)	+ (19.1)
243x	3-9	+ (34.4)	-
729x	1-3	+ (34.8)	-
2187x	0	-	-

LAMP is 9x less sensitive than qPCR (analytical sensitivity)

(Kogovšek et al., 2015)

LAMP – validation (FD example)

(Kogovšek et al., 2015)

LAMP – validation

(FD & BN – testing of crude homogenates)

2015: 286 official grapevine samples

LAMP – test performance study (FD & BN – testing of extracted DNA)

- Euphresco project GRAFDEPI 2
- Participants: 10 laboratories (from the research and plant protection area from Europe and Australia)
- Additionally, LAMP FDp assay (Kogovšek et al., 2015) was compared with a Qualiplante/Hyris isothermal amplification assay for FD (ISOA FD Qualiplante) by 3 laboratories
- 18 DNA samples were subject of this TPS

LAMP – test performance study (FD & BN – testing of extracted DNA)

	Assay				
	LAMP BN	LAMP FD	ISOA FD		
		(Kogovšek et al., 2015)	Qualiplante		
No. of labs taking in account for the	10	10	3		
evaluation					
No. of results	180	179	54		
N ⁺	50	49	15		
PA	49	49	15		
ND	1	0	0		
Undetermined (sus) of N ⁺	0	0	0		
N [_]	130	130	39		
NA	130	127	38		
PD	0	0	0		
Undetermined (sus) of N ⁻	0	3	1		
Accuracy	99,4%	98,3%	98,1%		
Rate of true positives	98,0%	100%	100%		
Rate of true negatives	100%	97,7%	97,4%		

The validation data for LAMP FD (Kogovšek et al., 2015) available at EPPO website: http://dc.eppo.int/validationlist.php

Quantification

• monitor phytoplasma kinetics (progress of an infection, and variations of the phytoplasma titer through the season and in different plant tissues)

Plant Pathology (2013)

Doi: 10.1111/j.1365-3059.2012.02693.x

Spatiotemporal distribution of flavescence dorée phytoplasma in grapevine

N. Prezelj, P. Nikolić, K. Gruden, M. Ravnikar and M. Dermastia*

- screening plants for resistance against phytoplasma
- estimate the number of copies carried by the vectors

Quantification

 Real time PCR: quantification against reference material (standard curve):

No certified phytoplasma reference material (dilutions of a sample containing the target DNA sequence or a sample with known copy numbers of plasmids)

Quantification

Digital PCR

- absolute quantification of target sequences without relying on the use of standard curves

- droplet digital PCR (ddPCR):

droplet generation

amplification (PCR)

Analysis of FDp with ddPCR

Transfer from qPCR to ddPCR

Plant Pathology (2007) 56, 785-796

Doi: 10.1111/j.1365-3059.2007.01688.x

Real-time PCR detection systems for Flavescence dorée and Bois noir phytoplasmas in grapevine: comparison with conventional PCR detection and application in diagnostics

M. Hren^{a*}, J. Boben^a, A. Rotter^a, P. Kralj^b, K. Gruden^a and M. Ravnikar^a

•same primers and probes change in mastermix

doi: 10.5958/2249-4677.2014.00576.3

Indian ournals.com

G.A.

Phytopathogenic Mollicutes Vol. 4(1), June 2014, 9-15

Research Article

Quantitative analysis of "flavescence doreé" phytoplasma with droplet digital PCR

Nataša Mehle, Tanja Dreo and Maja Ravnikar

ARRS (Slovenian Research Agency) project (contract no. L4-5525)

Analysis of FDp with ddPCR

Sensitivity: similar as with qPCR

qPCR

ddPCR

Analysis of FDp with ddPCR Repeatability of ddPCR and qPCR:

higher precision and repeatability of ddPCR for quantification of FDp at the low concentrations

Conclusions – phytoplasma detection

Diagnostic procedure:

simple&quick homogenisation step + DNA extraction based on the binding of DNA to magnetic beads + real-time PCR

• LAMP assay for FDp and BNp:

- Application in laboratories (high through-put) or without expensive equipment on-site
- LAMP is less prone to inhibition therefore just homogenization of samples without NA extraction is sufficient

Conclusions – phytoplasma detection

ddPCR for FDp:

- Absolutly quantify phytoplasma without the need of any calibrant (calibration curves for quantification of FDp are not needed)
- Quantification and quality control of DNA based on in-house reference materials typically used in diagnostics and metrological laboratories

Bulletin OEPP/EPPO Bulletin (2014) 44 (3), 502-509

ISSN 0250-8052. DOI: 10.1111/epp.12166

Descriptive assessment of uncertainties of qualitative real-time PCR for detection of plant pathogens and quality performance monitoring

N. Mehle¹, T. Dreo¹, C. Jeffries² and M. Ravnikar¹ ¹National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia; e-mail: Natasa.mehle@nib.si ²Science and Advice for Scottish Agriculture, Roddinglaw Road, EH12 9FJ, Edinburgh, UK

Acknowledgement

- FP7 project Vitisens
- Slovenian Research Agency (contract no. L4-5525)
- Slovenian phytosanitary administration

Acknowledgement Euphresco project GRAFDEPI 2

-					
Acronim	Contact	Laboratory			
AU-AgriBio	Fiona Constable	AgriBio, Australia			
BE-ILVO	Kris De Jonghe	Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences - Crop Protection			
FR-ANSES	Marianne Loiseau	Laboratoire de la santé des végétaux / Plant Health Laboratory			
IT-CNR	Flavio Veratti, Cristina Marzachi	Istituto per la Protezione Sostenibile delle Piante, CNR			
IT-CRA-PAV	Luca Ferretti	CRA-PAV, Centro di Ricerca per la Patologia Vegetale			
IT-CRA-VIT	Elisa Angelini Luisa Filippin	C.R.A VIT Centro di Ricerca per la Viticoltura			
PT-INIAV	Esmeraldina Sousa, <u>Eugénia</u> Andrade	Instituto Nacional de Investigação Agrária e Veterinária, I.P.; Unidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade Vegetal			
SI-NIB	Marina Dermastia, Nataša Mehle, Polona Kogovšek	National Institute of Biology			
UK-FERA	Jennifer Hodgetts	Fera Science Ltd. (Fera)			
UK-Nottingham	Matt Dickinson	School of Biosciences, University of Nottingham, Sutton Bonington Commun			

