Implementation of the detection protocol for *Xanthomonas euvesicatoria* in pepper seeds

*M. Ferrari*¹, *B. Xhemali*¹⁻², *D. Giovanardi*¹ & *E. Stefani*¹

¹Dept. of Life sciences, University of Modena & Reggio Emilia, Italy
²Kosovo Institute of Agriculture (KIA), Peja, Kosovo
The disease

- Bacterial spot is a worldwide disease, mainly affecting tomato and pepper.
- Symptoms may affect all aerial parts and are particularly severe on pepper.
The causal agent

- The causal agent was formerly known as *Xanthomonas campestris* pv. *vesicatoria*.
 - Now reclassified into four species:
 - *Xanthomonas vesicatoria*
 - *Xanthomonas euvesicatoria*
 - *Xanthomonas perforans*
 - *Xanthomonas gardneri*
- All four species are regulated
The EPPO diagnostic protocol

Flow diagram for testing tomato and pepper seeds to detect *Xanthomonas* spp.
Objective or our studies

- Implement the diagnostic protocol for pepper seeds.
 - In particular, focusing on *X. euvesicatoria*
- Compare two different DNA extraction methods.
- Compare ELISA diagnostic results with PCR and Direct Isolation on agar media.
- Suggest implementation of the DP
Material and Methods

- During the analytical season 2014 on pepper seeds in Novi Sad (Serbia), 13 seeds lots found *Xeuv* positive
 - Test applied: DAS-ELISA (Loewe)
- The second lab sample was taken for:
 - Direct isolation on YGCA
 - Preparation of seed extracts for PCR
 - Heat shock
 - DNeasy Plant Mini Kit columns (Qiagen)
Material and Methods

- PCR protocol applied on seed extracts:
 - EPPO
 - Primer pairs (Koenraadt et al., 2007)
- For the identification of putative *Xeuv* colonies obtained on YGCA:
 - BOX, REP, ERIC
- Analysis of genetic profiles:
 - UPMGA Cluster analysis (GelCompar 4.1, Applied Maths, Kortrijk, Belgium)
 - Pearson’s correlation coefficient
Results

<table>
<thead>
<tr>
<th>Samples (varieties or breeding lines)</th>
<th>ELISA</th>
<th>Direct isolation, confirmed by PCR on pure cultures and genotyping</th>
<th>PCR DNA extraction with heating shock</th>
<th>PCR DNA extraction with DNeasy Plant Mini Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 1 2013/5</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BL 2 2013/8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Novosađanka 1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Novosađanka 2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Altina</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anita</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amphora</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Una</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Matica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Soraksari</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Vranjeska</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plamena</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manpryka - ECW</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Results – ERIC PCR
Results - Clustering
Discussion and Comments

- Comparing results:
 - PCR is best done by previous DNA extraction and purification using mini columns
 - PCR confirmed most ELISA results
 - Direct isolation is not so sensitive

- Identifying *Xeuv*
 - Genotyping not always able to discriminate *Xeuv* from *Xper*
 - REP primers are more discriminative than BOX or ERIC
Thank you for your attention!