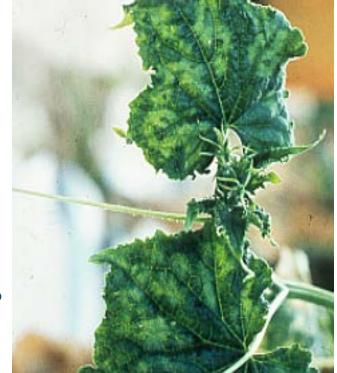
Dear or alive.... That is the question

Detection of infectious and non-infectious CGMMV


René van der Vlugt, Henry van Raaij, Petra van Bekkum & Jan Bergervoet

CGMMV

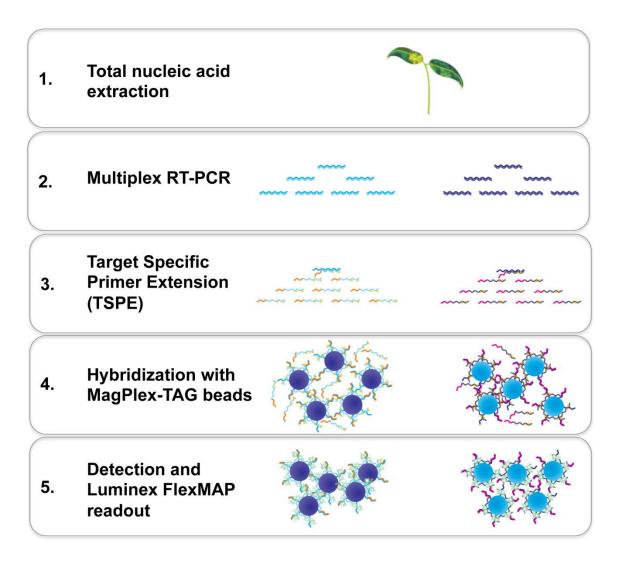
- Cucumber green mottle mosaic tobamovirus (CGMMV) on cucumber seed is a growing problem
- Very stable, highly infectious virus
- Seed transmitted
- Seed testing
 - DAS-ELISA (coat protein only, antibodies available?)
 - (RT)-PCR or TaqMan
- What does a positive result mean?
 - Is the virus still infectious?

Project Aim

Develop and validate a test to distinguish between 'alive' (infectious) and 'dead' (non-infectious) Cucumber green mottle mosaic virus (CGMMV) on cucumber seeds

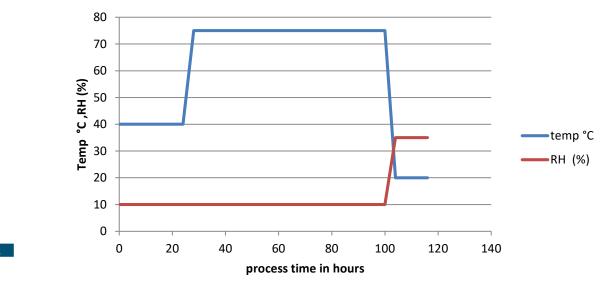
Hypothesis

- Infectiousness of virus depends on intact viral RNA
- Less intact RNA means less infectious virus


Research set-up

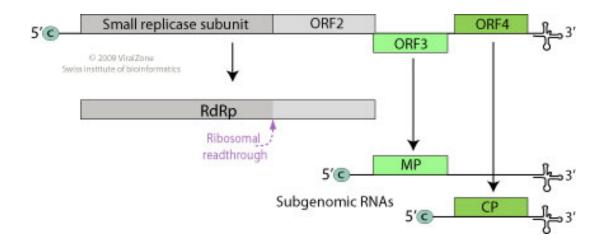
Method to detect multiple targets necessary

- Luminex xTAG TSPE assay
 - Generation of multiple (larger) RT-PCR products
 - Linear amplification of each PCR product through TSPE (template spec. primer extension)
 - Fluorescent detection of multiple TSPE products
 - Sum and comparison of fluorescent TSPE signals indicates intactness or absence of virus RNA


xTAG technology: Workflow summary

CGMMV seed transmission

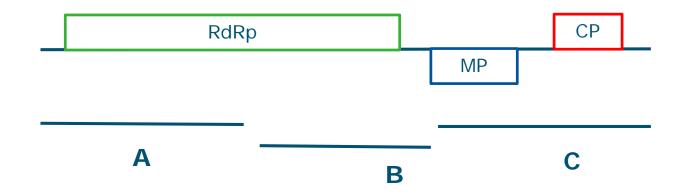
- CGMMV transmitted through seeds Cucurbitacae
- Virus is 'on' the seed coat
- Disinfection of seed by 'dry heat treatment'
 - Controlled temperature regime for 120 hours
 - Very critical process: delicate balance between survival of seeds and '*death*' of virus



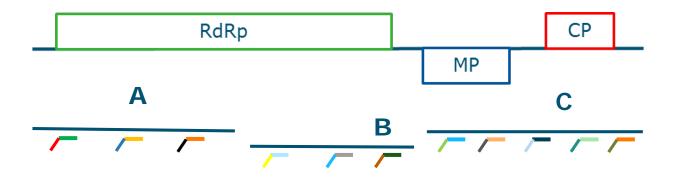
CGMMV genome

Cucumber green mottle mosaic virus

Tobamovirus


- ss RNA (+-sense) ± 6500 nts
- 4 ORFs: RdRp (+readthrough), MP and Coat Protein

Research Set-up CGMMV


- Design of multiple RT-PCR primer sets to cover the CGMMV genome
 - Preferably 'large' RT-PCR products (1,5 2 Kb)
 - A, B and C cover ± 80% of total genome

Research Set-up CGMMV

Design of TSPE primers

A total of 11 TSPE signals

- A = 3 signals
- B = 3 signals
- C = 5 signals

Research Set-up CGMMV

Breakdown of CGMMV RNA

- No RT-PCR products formed
- No TSPE primers will bind
- No TSPE signals will be generated

TSPE primer selection

- Initial testing of TSPE sets on individual RT-PCR products of CGMMV K3 isolate (on Nb and Cucumber)
 - Combined TSPE sets

template	TSPE 273	TSPE 707	TSPE 1208	TSPE 2268	TSPE 2484	TSPE 2780
Nb A	31.832	225	20.584	319	251	234
Cu A	30.692	253	11.778	350	236	237
Nb B	378	326	533	69.701	934	3.152
Cu B	433	326	427	64.517	611	2.024

Differences in signal strength between TSPE primers but no cross-reactivity

Detection of CGMMV on seeds

Isolate ZZB-545 on cucumber seeds

template	TSPE 273	TSPE 707	TSPE 1208	Back- ground
ZZB545	15.583	7.578	7.865	207

template	TSPE 2268		TSPE 2484	TSPE 2780		Back- ground
ZZB545	19.477		1.769	13.854		433
template	4382	4578	4938	5357	5988	Back- ground
ZZB545	4.296	605	2.420	8.721	7.391	660

CGMMV detection after dry heat treatment

Dry heat treatment of ZZB-545 seed batch (Bert Woudt, Syngenta)

• TSPE primers for PCR-fragment A

template	TSPE 273	TSPE 707	TSPE 1208	Back- ground
Healthy seed	302	255	270	666
No treat	22.740	13.191	14.845	486
Heat	370	296	345	425
К3	22.257	363	22.971	926

CGMMV detection after dry heat treatment

Dry heat treatment of ZZB-545 seed batch (Bert Woudt, Syngenta)

• TSPE primers for PCR-fragment B

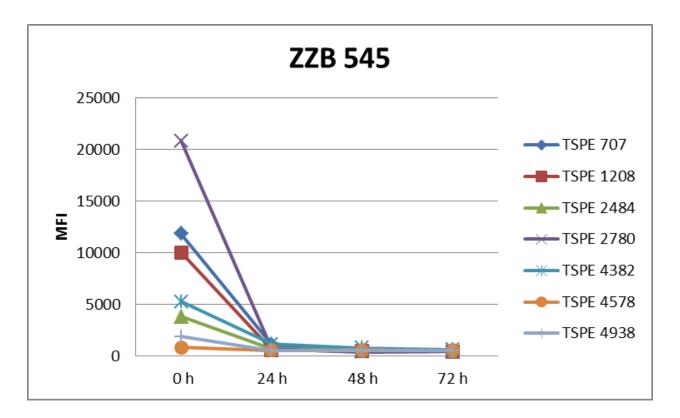
template	TSPE 2268	TSPE 2484	TSPE 2780	Back- ground
Healthy seed	261	238	265	370
No treat	33.086	6.243	46.587	377
Heat	761	231	289	408
K3	84.626	1.949	9.974	442

Results on CGMMV infected plant material

xTAG TSPE amplicon detection

- Successful amplicon detection with 11 TSPE-primers
- Detection of CGMMV isolates (infected leaves)
 - >15 different CGMMV isolates detected
 - Replications always consistently positive
- Detection of CGMMV isolates (on seed batches)
 - All 4 available seed batches clearly positive
 - Replications always consistently positive
 - Destruction of amplicons abolishes TSPE signals

CGMMV seed treatment


Time course experiment on CGMMV heat treated seeds

- Three seed batches Naktuinbouw (ZZB545, ZZB636 and ZZB637)
- Heat treatment performed by Syngenta Seeds (Bert Woudt)
- Samples taken at 0, 24, 48 and 72 hours
 - RNA extraction on crushed seeds (4 x 100 seeds)
 - DAS-ELISA tests all positive
- Luminex xTAG assay
 - 4 replicates of 100 seeds on each time point

Luminex assay on heat treated seeds

- Average of Luminex signals (MFIs) of four replicates
 - ZZB 545 as an example

Assay validation

Assay scope

- the detection of intact RNA of CGMMV (*Cucumber green* mottle mosaic virus) in cucumber seeds using a Luminex xTAG assay
- Performance characteristics (EPPO PM 7-98)
 - Trueness
 - Analytical sensitivity and specificity
 - Selectivity
 - Repeatability
 - Reproducibility

Assay validation

Trueness

- Conformation by DAS-ELISA, RT-PCR and sequence analyses of amplicons
- Sensitivity
 - 3 replicates of dilutions series of RNA (seeds and leaves)
 - Consistent detection of 100x dilutions
- Specificity
 - 4 seed lots + 9 known CGMMV isolates all positive
 - KGMMV (related tobamovirus) = negative
 - CMV (unrelated cucumber virus) = negative

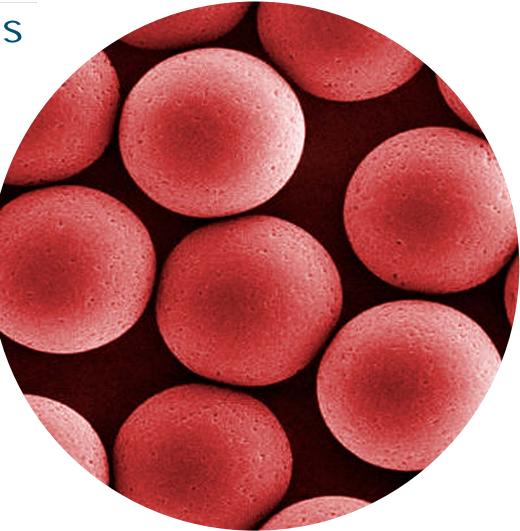
Assay validation

Selectivity

- 5 different seed lots of unknown origin and assumed different cultivars were all positive with similar negative values
- Test performance not influenced by cultivar
- Repeatability and Reproducibility
 - 4 replicates, 2 extraction methods, 3 seed batches
 - Samples (0, 24, 48 and 72 hrs) of heat treatments
 - 8 repetitions of each timepoint on each seed batch
 - No differences between repetitions

Conclusions

- Multiplex CGMMV Luminex assay with 11 data-points successfully developed
- Reliable detection of multiple isolates
 - On plant material and different seed batches
- All heat-treated seed lots become negative in Luminex assay but remain positive in ELISA
- Assay was successfully validated
- Confirmation of Luminex results through bio-assay in still pending
 - Is the virus really 'dead'?



Acknowledgements

Bert Woudt Syngenta Seeds

Harrie Koenraadt Naktuinbouw

QUESTIONS?

