TESTA WP1 Task 1.2:

Protocols for assessing *Tilletia* spp. transmission rates.

Background: Bunt of Wheat

✓ Pathogens agents of *Tilletia* spp.

✓ Epidemiology

Geoffrey ORGEUR-EPPO Testa Conference-30th November 2015

Background: Economic impact

Contamination rate of the wheat seeds:

6000 to 8000 spores / seeds → contaminated seeds

easily

Disseminates very

9 billions of spores / seeds → bunt seeds

Major risk to wheat producers

Certification at 0 spores in 2007 in France for seed lots untreated

Background: Detection

- ✓ Method by filtration:
 - Agitation of 50 grams(≈1000 seeds) in 200 ml of buffer
 - Repeatedly sieved

to eliminate impurities

• Collect (x Maliass

Method does not estimate the viability of the spores

- Identification of the spores
- Determination of the concentration (spores/mL)

✓ Alternative method of treatment

Judge the efficiency of treatments

Aims:

Evaluate viability of *Tilletia* spp. spores.

Develop a method to assess pathogen transmission from seeds to plants and from soil to plants

Measure damage threshold symptoms' expression in field.

Set up protocol for early detection of *Tilletia* spp. by PCR

Estimate viability of spores of Tilletia spp.: in vitro

Staining of spores

Germination of spores

Detection of spores by filtration (ANSES MOA 017)

Groupe d'Étude et de contrôle des Variétés Et des Semences

Transmission of *T. Caries* in plantlet: *in vivo*

Artificial contamination of seeds and soil

Adapted (Method CEB N°42)

Controlled (Detection by filtration)

Sowing in controlled conditions

Transmission of viable pathogen to plantlet

Controlled

Validated

Sampling of plantlets for PCR analyses
Transfert of plantlets in field/greenhouse at
2 leaves stage

Early detection by PCR

- On plantlets
 - Different stages of development
 - Cotyledons
 - 2-3 leaves

better repeatability

- Different sampling areas
- On soil
 - Direct sampling
 - Sampling after filtration and centrifugation

Primers provided by Arvalis

Groupe d'Étude et de contrôle des Variétés Et des Semences

Experimental design

Range of contamination

From 0 to 10 000 spores alive/seed (2013 and 2014). From 0 to 200 000 spores alives/gram of soil (2015)

Transfert of plantlets

In field (2013 and 2014) & in greenhouse (2014 and 2015)

2 experimental fields

(FNAMS):

Brain-sur-l'Authion (49), Bourges (18)

1 greenhouse(GEVES

Beaucouzé (49)

Observations to evaluate the viability of the spores % of bunt ears in fields and greenhouse % of infected plantlets detected by PCR (3-4 leaf stage)

Viability control of spores

Comparison of the two methods used to estimate viability of spores.

Correlations (Comparison staining-germination)

Very good correlation between staining of the spores of *Tilletia caries* and germination tests

Groupe d'Étude et de contrôle des Variétés Et des Semences

Transmission from seeds to plant Results 2013 & 2014

Bunt ears observed only on viable spores conditions

Correlation between % of bunt ears observed in field and infected plants detected by PCR

(DNA sampling from the stem)

Damage threshold: 1 spores/seeds in greenhouse & field

Transmission from soil to plant Results 2015

Evaluation of the damage potentiel of *Tilletia caries* spores from soil to plants

Damage threshold: 2 spores/ gram of soil

Gap between % of positive plantlets detected by PCR compared to % of bunt ears

→ Deferred sowing in time

Transmission from seed to soil and from soil to plant Results 2015

Objective: Evaluate the dissemination between too sowing

1) Seeds artificially infected are sown in healthy soil

plantlets are analyzed by PCR after 5 weeks

2) Healthy seeds are sown in the same soil after the first sampling

plantlets are analyzed by PCR after 5 weeks

Seeds artificially infected provided from contamination of 2014 (with spores from 2013):

Decreasing of the viability

lower transmission from seeds to plants

Nevertheless transmission of spore from seeds to soil to plant at high contamination rate

A new test is ongoing with seeds artificially infected with new spores from 2014.

Summary

Validation of a staining method to evaluate viability of *Tilletia caries* spores

2013 1% to 4% of bunt ears in field at 1 spore alive/ seed

4 % of bunt ears in greenhouse at 1 spore alive/ seed condition

2015 1% of positive plantlet detected by PCR at 2 spores alive/ gram of soil

Results presented & used by French ministary

Derogation of norm at 0 spore/seed lot

Conclusion

Protocols available

- Detection and identification of Tilletia species in seed lot
- Evaluation of viability of spores of Tilletia caries
- Grow out and early detection by PCR
 - On soil after filtration and centrifugation
 - On plantlets at 2-3 leaves stages
- Inoculum production (seeds or plantlets infected)

Tools available to evaluate

Efficiency of alternatives seed treatments

Resistance of varieties

Groupe d'Étude et de contrôle des Variétés Et des Semences

Acknowledgment

- Matthieu Rolland and Aurélie DUPUY from BioGEVES, France
- Romain Valade and Clément Compagnon from ARVALIS, France
- Julie Gombert and Fabien Colombel from FNAMS, France.
- Berta Killerman and Robert Bauer from LfL Pflanzenbau, Germany.
- Laure Weisskopf from Agrocope, Switzerland.
- Eckhard Koch from JKI, Germany.
- Valérie Cockerell and Marian McNeil from SASA, Scotland.

Thanks for your attention

