
Colonization routes of *Xanthomonas campestris pv. campestris* in Brassica plants that can result in seed infection

Jan van der Wolf, Pieter Kastelein, Tadeu Antônio Fernandes da Silva Junior and Flávia Vieira Lelis

Xanthomonas campestris pv. campestris – F^{Testa} black rot

Mature plants

Transplants

V-shaped chlorotic and necrotic lesions along leaf margins, vein blackening

http://ohioline.osu.edu/hyg-fact/3000/3125.html

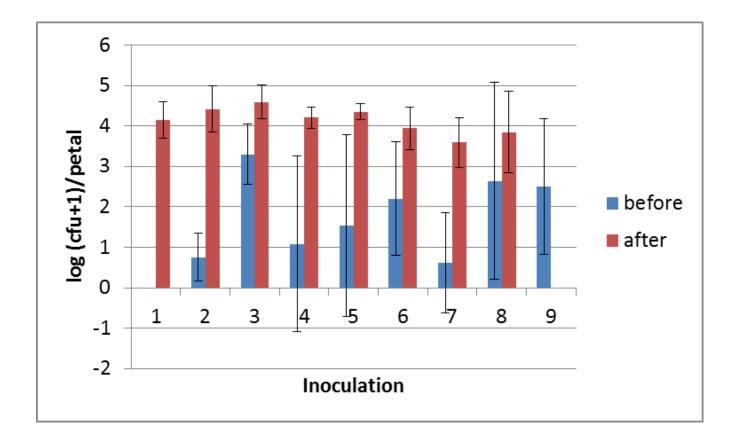
Objectives

- Study the seed infection process on Brassica plants after flower inoculation with GFP-tagged Xcc strains
- Study the transmission of Xcc by bumble bees from infected to Xcc-free plants

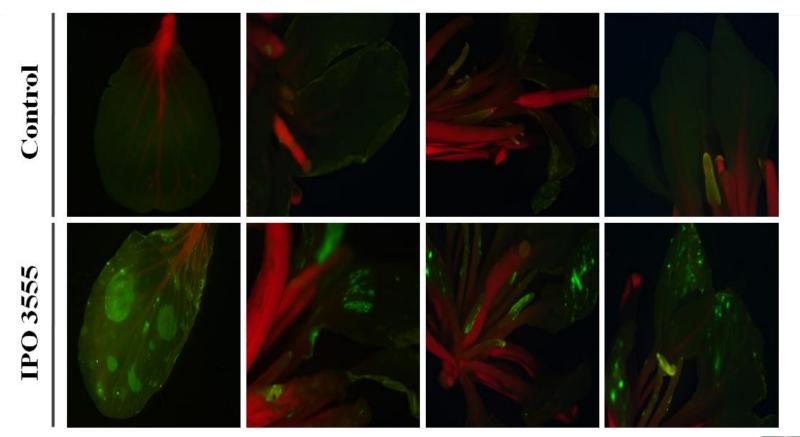
Flowers (5 days after beginning flowering) of Rapid Cycling Brassica plants grown at 24°C, inoculated by spraying* strain GFP-tagged strain Xcc 3555

Experiment	Nr. inoculations	Period (2013)	Interval	Nr. plants 3555		Boxes (ca. 40 bumble bees)
1	11	Мау	2-3 days	64	12	3x
2	8	December	2-3 days	50	12	6x

* Experiment 1: 10⁸ cfu ml⁻¹ suspension; Experiment 2: 10⁷ cfu ml⁻¹ suspension


Flower Infection of Brassica Plants by Xcc

- Petals
 - Population dynamic studies by dilution plating
 - Localization studies by epifluorescence microscopy (ESM)
- Siliques
 - Black rot incidence on siliques analysis 11 days after the last inoculation
 - Localization studies with ESM
- Seed
 - Incidence of external and internal infections by dilution plating on mFS(kan)
 - Localization studies with ESM and confocal laser scanning microscopy (CLSM)

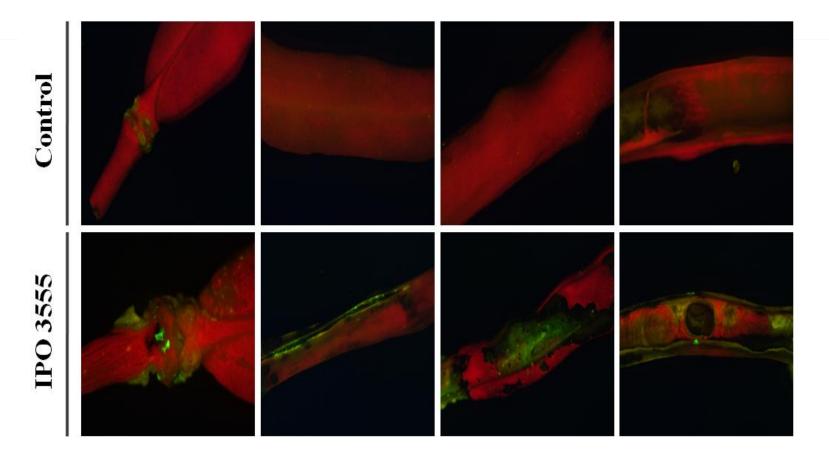

Xcc does not colonize petals after spray-

% infected petals before inoculation: 66 (n=32) % infected petals after inoculation: 100 (n=32)

ESM analysis of flowers direct after inoculation

GFP-signals on petals, sepals and stamens

Testa

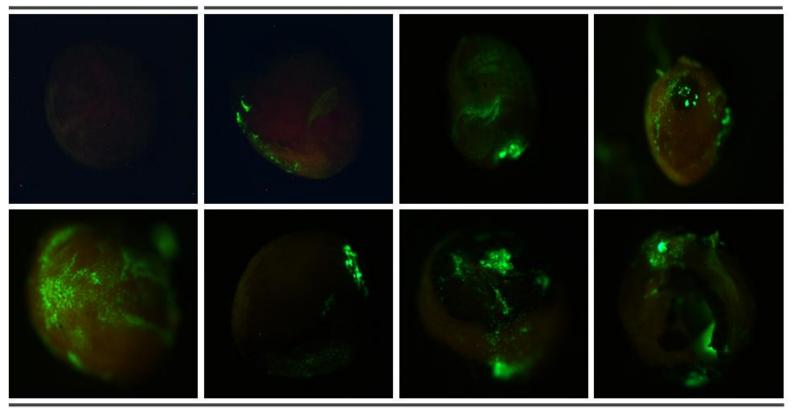


Experiment	Inoculum	Nplants	Overall		Range per plant	
1	10 ⁸ cfu ml ⁻¹	20	76.5	а	15 - 100	
2	10 ⁷ cfu ml ⁻¹	19	57.6	b	35 - 95	

Per randomly selected plant, 20 siliques were assessed

Xcc does colonize siliques after sprayinoculation

Colonization of pedicels, septum and valves

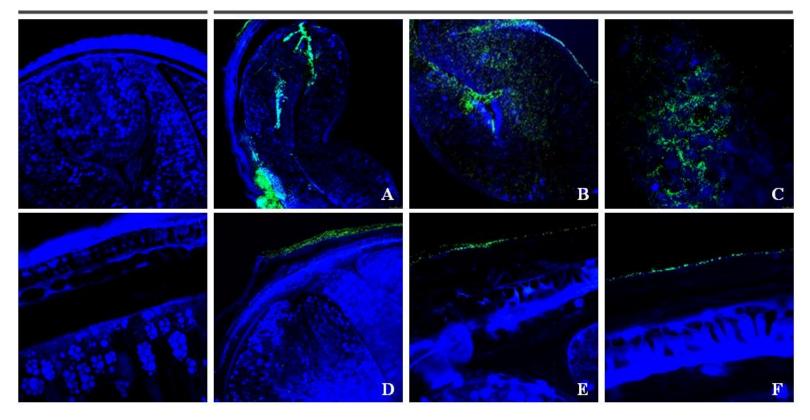

Testa

Xcc can colonize the seed coat after spray inoculation often in low densities

Control

IPO 3555

IPO 3555


 2^{nd} experiment: colonization seed coat in 5.2% seeds (n=174, 23 siliques (not visible before incubation on blotters)

Xcc can cause internal seed infections

IPO 3555

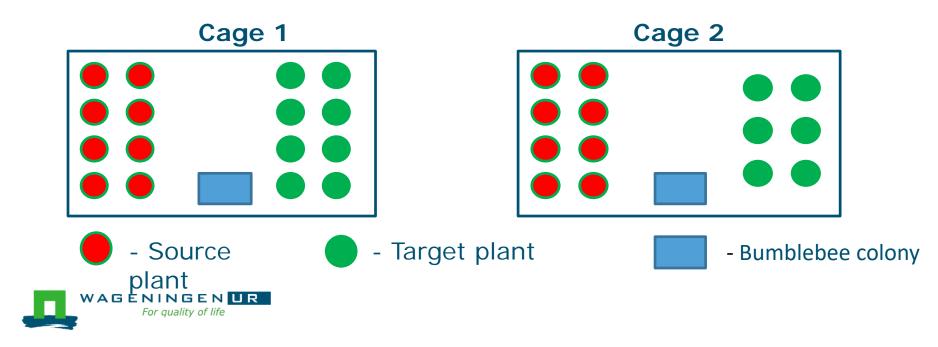
Colonization seed coat in 5.2% seeds (n=174, 23 siliques (not visible before incubation on blotters)

Exp.	N		% external contaminations			% internal infections*		
			Total	Low densities (0-10 ³)	High densities (>10 ³)	Total	Low densities (0-10 ³)	High densities (>10 ³)
1	32	Хсс	84	59	25	66	28	38
	32	Kan ^r Xcc	12	9	3	6	0	6
2	100	Хсс	85	16	69	32	32	0
	100	Kan ^r Xcc	9	9	0	1	1	0

(25-seed subsamples)

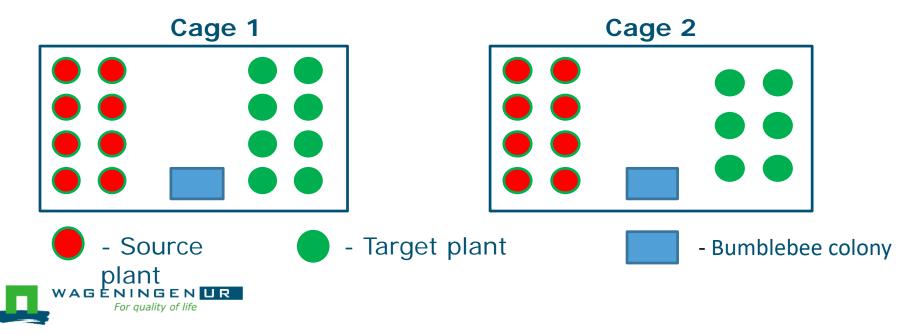
* Positive after hot-water treatment

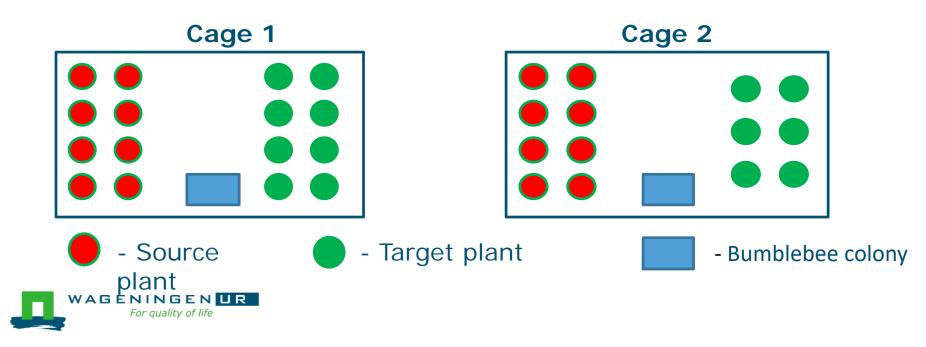
Experiment	N		% external contamination	% internal infection
1	32	Хсс	7.2	4.2
2	100	Хсс	7.0	2.0



 $I = \{1 - [(N - p)/N]1/n\}*100$

Two cages with flowering RCB plants

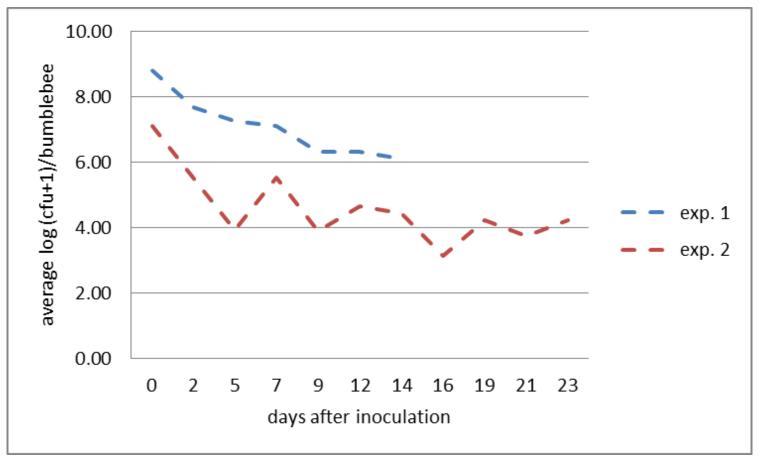

- One cage with 8 inoculated source plants and 8 noninoculated target plants
- Another cage with 8 inoculated source plants and 6 noninoculated target plants


- Source plants and target plants were kept separately until starting the experiments
- Source plants were inoculated 4 times with WT strain IPO 3078 (10⁸ cfu/ml)
 - Leaves and flowers at 40 days after sowing
 - Flowers at 42, 45 and 47 days after sowing

(Leaves developed black rot symptoms)

- Source plants, target plants and bumblebees were placed in the cages directly after the 4th inoculation of the target plants
- Source plants and target plants without direct contact
- Bumblebees in the cages during 7 days
- Source plants and bumblebees removed from the cages at the same time

- Assessments on target plants
 - % siliques with black rot symptoms
 - Xcc infections in seed
- Siliques with black rot
 - Cage 1
 - Total over 8 plants: 12.0%; Range 2 22%
 - Cage 2
 - Total over 8 plants: 14.6%; Range 3 31%
- Seed infections
 - Cage 1
 - Xcc detected by plating in seed from 5 of the 8 plants
 - Cage 2
 - Xcc detected by plating in seed from 3 of the 6 plants


Survival of Xcc in bumblebee colonies

- Two experiments with survival of Xcc bumblebee colonies in the laboratory
 - Xcc WT strain IPO 3078
 - 48 hr cultures on TSA plates
 - Bumble bees were brought in contact with bacterial slime
 - In each experiment 2 inoculated bumblebee colonies and 1 negative control
 - Xcc contamination assessed
 - 0, 2, 5, 7, 9, 12 and 14 dpi (experiment 1)
 - 0, 2, 5, 7, 9, 12, 14, 16, 19, 21 and 23 dpi (experiment 2)
 - 3 bumblebees/colony shaken for 10 min in 10 ml PBST
 - Dilution plating on mFS medium
 - 72h incubation 25°C

Survival of Xcc in bumblebee colonies

Average of 6 bumblebees per time point

Testa

Conclusions and discussion

- Flower inoculation of Brassica plants results in high rate of infected seed
- CLSM analysis strongly suggests internal infections of seeds
- The presence of Xcc in hot-water treated seeds also indicates the presence of internal infections
- It is very likely that bumble bees can transmit Xcc from symptomatic to Xcc-free plants
- Xcc can survive for a long period on bumble bees
- The lack of stability of the GFP-expression in transformed strains is still a problem

Acknowledgement

- Karolina Ilowiecka
- Marjon Krijger
- Patricia van der Zouwen
- Dutch Ministry of Economic Affairs
- Dutch seed companies: Bejo, RijkZwaan, Nickerson, Syngenta and ENZA

