

Pseudomonas syringae pv. actinidifoliorum and strains of Pseudomonas syringae with low virulence found in kiwifruit orchards in Spain

F. Morán¹, A. Abelleira², E. Landeras³, and M. M. López¹

¹Instituto Valenciano de Investigaciones Agrarias (IVIA), Spain

² Diputación de Pontevedra, Estación Fitopatolóxica de Areeiro, Spain

³Laboratorio de Sanidad Vegetal (LSV) de Asturias, Spain

Pseudomonas syringae pv. actinidiae populations

- Population or biovar 1 (Psa 1): strains detected in Japan.
- Population or biovar 2 (Psa 2): strains detected in Korea.
- Population or biovar 3 (Psa 3): (Psa-V, virulent strains), very aggressive strains detected in Italy, France, New Zealand, Portugal, Spain and other countries.
- Population or biovar 4 (Psa 4): (Psa-LV, less virulent strains),
 detected in New Zealand, Australia, France and recently in the
 North of Spain. Named *P. syringae* pv. actinidifoliorum (Psaf) (Cunty
 et al. 2014)

EPPO Protocol

Flow chart for detection and identification of Psa

PCR for rapid screening of samples

- -Isolation.
- -Conventional PCR (Rees-George et al. 2010) Duplex PCR (Gallelli & Loreti, 2011)

Psa-LV

Psa-V

The first *P. syringae* Spanish strains showed pathogenic, phenotypic and molecular characteristics identical to *P. syringae* pv. *actinidiae* V (Psa 3) (Abelleira et al. 2011, 2013)

Pathogenicity test with Spanish strains in comparison with strains from New Zealand

Detection of Ps-LV from leaves, flower sepals and asymptomatic canes

 Inoculations with Spanish strains showed the Psa-LV causes tiny spots in leaves but do not do not cause symptoms in kiwi canes, just a callus at the inoculation wound.

• They also cause symptoms in pepper fruits but not on *Prunus cerasus*.

Test in branches with strains LV

4439 4440 4441 4442-1

Dendrogram from 16SrRNA gene sequences for classification of Spanish strains

Psa V (Psa3) and Psa LV (Psa4 = Psaf)

Similarities and differences

- -Similar symptomatology in leaves, differences in virulence
- -Colony morphology: Psa 1, 2, 3 are cremy-white and non fluorescent at 72h in KB. Strains with LV show variable fluorescence.
- Some biochemical tests and API 50 CH show different utilisation of compounds for both types.
- -Similar results in Rees-George et al (2010) PCR, but different in duplex PCR (Gallelli and Loretti 2011), multiplex PCR and BOX-PCR.

Effector gene amplification of different Psa isolates

Country of origin	Japan	Italy (1992 outbreak)	Korea 1994	Korea 2011	China	ltaly (2008-9 outbreak)	New Zealand	Chile	Spain Pontevedra	New Zealand	Australia	Spain A Coruña
MLSA group	Psa1	Psa1	Psa2	Psa2	Psa3	Psa3	Psa3	Psa3	Psa3	Psa4	Psa4	Psa4
Gene Name												
avrPto1	-	-	-	-	-	-	-	-		-	-	-
avrD1	+	+	+	+	+	+	+	+	+	-	-	-
avrE1	+	+	+	+	+	+	+	+	4	+	+	+
hopA1	-	-	-	+	+	+	+	+	-	+	+	+
hopC1	-	-	-	-	-	-	-	1		-	-	-
hopF2	-	ı	-	-	-	-	-	1	-	-	•	•
hopG1	-	-	-	-	-	-	-	-	-	-	-	-
hrpK1	+	+	+	+	+	+	+	+	+	+	+	+
hopAF1	-	ı	-	-	-	-	-	1	-	+	+	+
hopAN1	+	+	+	+	+	+	+	+	+	+	+	+
hopH1	+	+	-	+		+	+		+	-		1
phaseolotoxine	+	+	-	-	-	-	-	1	-	-	-	-
coronatine	-	-	+	+	-	-	-	-	-		-	

The LV Spanish strains show pathogenic, phenotypic and molecular characteristics of *P. syringae* pv. *actinidifoliorum*

Abelleira et al. 2015. Journal of Applied Microbiology (in press)

Test in leaves with Psaf look-alike strains of LV

Strain NZ10627 (Psa -V)

Strain 4515-2

Test in leaves with strains LV

Virulence in leaves similar to Psaf

Dendrogram from 16SrRNA gene sequences for classification of Spanish strains

 Spanish strains inside the group P. syringae.

New Psaf look-alike Spanish strains

Pseudomonas considered as Psaf look-alike, isolated from asymptomatic kiwi plants (leaves and flowers), are being investigated:

- Test LOPAT: + - + and ----+ (Psaf =+---+)
- Hypersensitivity reaction in tobacco positive
- Profile API 50 CH ≠ to Psaf and Psa
- Negative for phaseolotoxin and coronatine (equal to Psaf)
- Pathogenic on Hayward leaves but do not produce canker
- PCR Rees-George et al (2010) positive.
- PCR Gallelli and Loreti (2011) positive for both targets
- 16S rRNA reveals proximity to P. syringae pv. tomato
- Different by biochemical and molecular tests of Psa4.
- PCR Balestra et al. (2013) no geographical origin assigned.

Test in branches

4446-1 4446-2 4515-2

MLSA

New Psaf look-alike Spanish strains

•Maximun- likelihood tree constructed with the concatenated (2230pb) partial sequences of four housekeeping genes *gapA*, *gltA* (*cts*), *gyrB* and *rpoD* of 88 strains

Comparison Psa, Psaf and psaf look-alike

	Psaf	Psaf look-alike	Psa3		
Virulence/Pathogenicity	+	+	+++		
Test LOPAT	++	++ and+	++		
Test INA	-	-	-		
MLSA group	Psaf	≠ Psaf and Psa	Psa3		
Phaseolotoxin	-	-	-		
Coronatine	-	-	-		
Production of canker	-	-	+		
Test GATT	+ + +/	+ + +/			
API 50 CH	Typical profile Psa	Profile ≠ to Psaf and Psa	Typical profile Psa		

The new LV Spanish strains show pathogenic, phenotypic and molecular characteristics close but not identical to *P. syringae* pv.

actinidifoliorum

Preliminary conclusions

Spanish isolates of *P. syringae* from kiwi plants are grouped in three groups:

Pseudomonas syringae pv. actinidiae Pseudomonas syringae pv. actinidifoliorum Pseudomonas syringae pv. actinidifoliorum look-alike

- Psaf look-alike show low virulence in Actinidia deliciosa
- Virulence and pathogenicity of Psaf and Psaf look-alike are similar.
- Analysis MLSA suggest a diference between Psaf and Psaf look-alike.
- For a more accurate taxonomic classification of Psaf look-alike strains:
- Presence of effector genes
- Host range test
- Genome sequencing

Thank you for your attention

