Pseudomonas syringae pv. actinidifoliorum and strains of Pseudomonas syringae with low virulence found in kiwifruit orchards in Spain

F. Morán¹, A. Abelleira², E. Landeras³, and M. M. López¹

¹Instituto Valenciano de Investigaciones Agrarias (IVIA), Spain
² Diputación de Pontevedra, Estación Fitopatolóxica de Areeiro, Spain
³Laboratorio de Sanidad Vegetal (LSV) de Asturias, Spain
Pseudomonas syringae pv. actinidiae populations

- Population or biovar 1 (Psa 1): strains detected in Japan.

- Population or biovar 2 (Psa 2): strains detected in Korea.

- Population or biovar 3 (Psa 3): (Psa-V, virulent strains), very aggressive strains detected in Italy, France, New Zealand, Portugal, Spain and other countries.

- Population or biovar 4 (Psa 4): (Psa-LV, less virulent strains), detected in New Zealand, Australia, France and recently in the North of Spain. Named *P. syringae pv. actinidifoliorum* (Psaf) (Cunty *et al.* 2014)
EPPO Protocol
Flow chart for detection and identification of Psa

Plant sample (symptomless)
Pathogen extraction

RAPID Screening tests
PCR according to Rees-George *et al.* (2010) or Gallelli *et al.* (2011) and isolation

P. syringae pv. actinidiae not detected

PCR test positive and colonies with typical morphology

Identification tests on pure cultures
Use at least two tests based on different biological principles

Positive
Psa detected
Confirm pathogenicity

Negative

Negative

Yes

No
PCR for rapid screening of samples

- Isolation.

- Conventional PCR (Rees-George et al. 2010) → Duplex PCR (Gallelli & Loreti, 2011)

The first *P. syringae* Spanish strains showed pathogenic, phenotypic and molecular characteristics identical to *P. syringae* pv. *actinidiae* V (Psa 3) (Abelleira et al. 2011, 2013)
Pathogenicity test with Spanish strains in comparison with strains from New Zealand
Detection of Ps-LV from leaves, flower sepals and asymptomatic canes

- Inoculations with Spanish strains showed the Psa-LV causes tiny spots in leaves but do not cause symptoms in kiwi canes, just a callus at the inoculation wound.

- They also cause symptoms in pepper fruits but not on Prunus cerasus.
Test in branches with strains LV

4439 4440 4441 4442-1
Dendrogram from 16SrRNA gene sequences for classification of Spanish strains
Psa V (Psa3) and Psa LV (Psa4 = Psaf)

Similarities and differences

-Similar symptomatology in leaves, differences in virulence

-Colony morphology: Psa 1, 2, 3 are creamy-white and non fluorescent at 72h in KB. Strains with LV show variable fluorescence.

- Some biochemical tests and API 50 CH show different utilisation of compounds for both types.

-Similar results in Rees-George et al (2010) PCR, but different in duplex PCR (Gallelli and Loretti 2011), multiplex PCR and BOX-PCR.
Effector gene amplification of different Psa isolates

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSA group</td>
<td>Psa1</td>
<td>Psa1</td>
<td>Psa2</td>
<td>Psa2</td>
<td>Psa3</td>
<td>Psa3</td>
<td>Psa3</td>
<td>Psa3</td>
<td>Psa3</td>
<td>Psa4</td>
<td>Psa4</td>
</tr>
<tr>
<td>Gene Name</td>
<td></td>
</tr>
<tr>
<td>avrPto1</td>
<td>-</td>
</tr>
<tr>
<td>avrD1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>avrE1</td>
<td>+</td>
</tr>
<tr>
<td>hopA1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>hopC1</td>
<td>-</td>
</tr>
<tr>
<td>hopF2</td>
<td>-</td>
</tr>
<tr>
<td>hopG1</td>
<td>-</td>
</tr>
<tr>
<td>hrpK1</td>
<td>+</td>
</tr>
<tr>
<td>hopAF1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>hopAN1</td>
<td>+</td>
</tr>
<tr>
<td>hopH1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>phaseolotoxine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>coronatine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The LV Spanish strains show pathogenic, phenotypic and molecular characteristics of *P. syringae* pv. *actinidifoliorum*

Abelleira et al. 2015. Journal of Applied Microbiology (in press)
Test in leaves with Psaf look-alike strains of LV

Strain NZ10627 (Psa –V)

Strain 4515-2
Test in leaves with strains LV

Virulence in leaves similar to Psaf
Dendrogram from 16SrRNA gene sequences for classification of Spanish strains

- Spanish strains inside the group *P. syringae*.
New Psaf look-alike Spanish strains

Pseudomonas considered as Psaf look-alike, isolated from asymptomatic kiwi plants (leaves and flowers), are being investigated:

- **Test LOPAT:** + - - - + and ----+ (Psaf =+----+)
- Hypersensitivity reaction in tobacco positive
- **Profile API 50 CH ≠** to Psaf and Psa
- Negative for phaseolotoxin and coronatine (equal to Psaf)
- Pathogenic on Hayward leaves but do not produce canker
- PCR Gallelli and Loreti (2011) positive for both targets
- **16S rRNA** reveals proximity to *P. syringae* pv. *tomato*
- Different by biochemical and molecular tests of Psa4.
- PCR Balestra et al. (2013) no geographical origin assigned.
Test in branches
MLSA
New Psaf look-alike Spanish strains

- Maximun-likelihood tree constructed with the concatenated (2230pb) partial sequences of four housekeeping genes gapA, gltA (cts), gyrB and rpoD of 88 strains

- Strains close to Psaf but not inside lineages described

- Strains separated significantly (Value bootstraps > 75%) of Psa and Psaf
Comparison Psa, Psaf and psaf look-alike

<table>
<thead>
<tr>
<th></th>
<th>Psaf</th>
<th>Psaf look-alike</th>
<th>Psa3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virulence/Pathogenicity</td>
<td>+</td>
<td>+</td>
<td>+ + +</td>
</tr>
<tr>
<td>Test LOPAT</td>
<td>++++</td>
<td>+++ and +++</td>
<td>++++</td>
</tr>
<tr>
<td>Test INA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MLSA group</td>
<td>Psaf</td>
<td>≠ Psaf and Psa</td>
<td>Psa3</td>
</tr>
<tr>
<td>Phaseolotoxin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coronatine</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Production of canker</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test GATT</td>
<td>+ + +/ +/- -</td>
<td>+ + +/ +/- -</td>
<td>- - - -</td>
</tr>
<tr>
<td>API 50 CH</td>
<td>Typical profile Psa</td>
<td>Profile ≠ to Psaf and Psa</td>
<td>Typical profile Psa</td>
</tr>
</tbody>
</table>

The new LV Spanish strains show pathogenic, phenotypic and molecular characteristics close but not identical to *P. syringae* pv. *actinidifoliorum*.
Preliminary conclusions

Spanish isolates of *P. syringae* from kiwi plants are grouped in three groups:

- *Pseudomonas syringae* pv. *actinidia*
- *Pseudomonas syringae* pv. *actinidifoliorum*
- *Pseudomonas syringae* pv. *actinidifoliorum* look-alike

- Psaf look–alike show low virulence in *Actinidia deliciosa*
- Virulence and pathogenicity of Psaf and Psaf look–alike are similar.
- Analysis MLSA suggest a difference between Psaf and Psaf look–alike.
- For a more accurate taxonomic classification of Psaf look–alike strains:
 - Presence of effector genes
 - Host range test
 - Genome sequencing
Thank you for your attention