

# Methods for diagnosis of Xylella fastidiosa in the UK

John Elphinstone, Andrew Aspin, Jenny Cole, Jen Hodgetts and Chris Malumphy,



#### **Reference** isolates

| NCPPB # | Identification as received           | Notes                                                      |
|---------|--------------------------------------|------------------------------------------------------------|
| 4339    | Xylella fastidiosa subsp. multiplex  | Grows on PW supplemental media at 28°C.                    |
| 4431    | Xylella fastidiosa subsp. multiplex  |                                                            |
| 4432    | Xylella fastidiosa subsp. fastidiosa | 16s rRNA shows as <i>Xylella</i> fastidiosa subsp. piercei |
| 4473    | Xylella fastidiosa subsp. fastidiosa |                                                            |
| 4588    | Xylella fastidiosa subsp. multiplex  | = LMG 9063                                                 |
| 4589    | Xylella fastidiosa                   | = LMG 15098                                                |

• X. f. subsp. pauca and variants not yet included



## Interlaboratory method comparisons (Anses)

- 3 x FR (Anses, INRA), IT (Bari), NL (NVWA), NZ (Auckland) and UK (Fera)
  - Xfp (coffee & citrus)
  - Xff (grapevine)
  - Xfm (olive and peach)
- ELISA data too eratic to analyse
  Real-time PCR best method
- Conventional PCRs strain specific
- LAMP promising but needs further validation

# Routine diagnostic methods



- Fastidious isolation media (PW & BYCE)
- DNA Extraction:
  - 0.3g plant material per sub-sample
  - Usually 2 sub-samples f symptomatic leaf material.
  - A slightly modified CTAB extraction method
    - Based on Doyle, J. J. and Doyle, J. L. 1990 Isolation of plant DNA from fresh tissue. *Focus* 12: 13-5.
      - No further DNA clean-up.



## Routine diagnostic methods

- Real-time PCR (Harper *et al.*, 2013)
  - Samples tested in duplicate using the protocol as described in the ring test.
  - Standard COX assay used as internal control.
  - Inhibition problems reduced by also diluting extracts (1:10) and adding BSA to mastermixes (6 µg per reaction)
- LAMP (Harper *et al.*, 2013)
  - Successfully used to confirm positive *Coffea* sample but not yet used routinely



# Routine identification methods

- MLST sequence identification of subsp.
  - Rodrigues et al., 2003 Detection and diversity assessment of *Xylella* fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Appl. Environ. Microbiol. 69:4249–4255.
  - Schuenzel et al. 2005. A multigene phylogenetic study of clonal diversity and divergence in North American strains of the plant pathogen *Xylella fastidiosa*. Appl. Environ. Microbiol. 71: 3832–3839.
  - Yuan et al., 2010. Multilocus Sequence Typing of *Xylella fastidiosa* causing Pierce's disease and oleander leaf scorch in the United States. Phytopathology 100 (6), 601-611
  - Parker et al. 2012. Differentiation of *Xylella fastidiosa s*trains via multilocus sequence analysis of environmentally mediated genes (MLSA-E). Appl. Environ. Microbiol. 78: 1385–1396
  - Nunney et al. 2013. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States. Appl. Environ. Microbiol. 79: 2189–2200
- http://pubmlst.org/xfastidiosa/



#### Strain specific PCR assays

- Firrao, G. and C. Bazzi. 1994. Specific identification of *Xylella fastidiosa* using the polymerase chain reaction, Phytopathologia Mediterranea,; 33: 90-92.
- **Minsavage GV** *et al.* **1994**. Development of a polymerase chain protocol for detection of *Xylella fastidiosa* in plant tissue, Phytopathology 84: 456-461.
- Rodrigues et al., 2003 Detection and diversity assessment of *Xylella fastidiosa* in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Appl. Environ. Microbiol. 69:4249–4255.
- Hernandez-Martinez et al. 2006. Differentiation of strains of *Xylella fastidiosa* Infecting grape, almonds, and oleander using a multiprimer PCR assay. Plant Disease 90 (11), 1382-1388.
- **Guan et al. 2015.** Specific detection and identification of American mulberryinfecting and Italian olive-associated strains of *Xylella fastidiosa* by polymerase chain reaction. PLoS ONE 10(6): e0129330. doi:10.1371/journal.pone.0129330

#### **Risks**



# *X. fastidiosa*-affected *c*ountries from which host plants are known to have entered the UK in the last 10 years (PHSI data).

| Country of<br>origin | X. fastidiosa status in country    | Host plants inspected on arrival                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brazil               | Present, restricted distribution   | Lantana, Nicotiana                                                                                                                                                                                                                                                                                                                                                                                      |
| Canada               | Present, few occurences            | Lonicera                                                                                                                                                                                                                                                                                                                                                                                                |
| Costa Rica           | Resent, no details                 | Artemisia, Bidens, Nicotiana, Pennisetum, Veronica, Vinca                                                                                                                                                                                                                                                                                                                                               |
| Italy                | Present, restricted distribution   | Acacia, Acer, Aesculus, Alnus, Canna, Citrus, Coprosma,<br>Cotoneaster, Cyprus, Cytisus, Daucus, Fraxinus, Fuchsia,<br>Hedera, Hydrangea, Juglans, Koelreuteria, Lactuca, Lantana,<br>Lonicera, Malus, Mentha, Morus, Nerium, Pelargonium,<br>Pittosporum, Platanus, Populus, Prunus, Pseudotsuga,<br>Pyracantha, Quercus, Rhus, Rosa, Rosmarinus, Salix,<br>Sambucus, Syringa, Ulmus, Vaccinium, Vitis |
| Mexico               | Present, no details                | Helianthus, Pelargonium                                                                                                                                                                                                                                                                                                                                                                                 |
| USA                  | Present, widespread in some states | Fragaria, Helianthus, Malus, Nicotiana, Rosa, Veronica                                                                                                                                                                                                                                                                                                                                                  |



10 species of xylem feeding insects commonly found in the UK, 7 of which feed on known hosts of *Xylella fastidiosa*:

- Cicadella viridis (Rosa & Vitis)
- Aphrophora alni (Alnus, Fraxinus, Populus & Salix)
- Aphrophora major (Salix)
- Aphrophora pectoralis (Salix)
- Aphrophora salicina (Salix & Populus)
- Neophilaenus exclamationis (Salix)
- Philaenus spumarius\* (Olea & Rosa)

Most are polyphagous on unspecified woody plants

# Planned survey activities



• Monitoring/inspection

Started with small numbers of entire plants for intensive sampling and testing

- Tracing back *Coffea* plants from known infected consignments
  - 1 of 2 samples positive
- Newly arriving Polygala myrtifolia with suspect symptoms
  - Up to 30 samples (2015)
- Other known hosts with suspect symptoms from imports/nurseries (Acer, Nandina, Nerium, Olea, Quercus, Salix, Vaccinium, Vitis,)
  - No findings
  - Sticky traps in tree nurseries for testing of potential vectors (2016?)



#### Future research

- Infection of potential reservoir plants under controlled climatic conditions
  - e.g. Vinca, Poa
  - Xff, Xfm, Xfp
- Transmission to other high risk hosts
  - Mode of feeding Electro Penetration Graphics (EPG)
  - Transmission times & efficiencies
  - Systemic colonisation and symptom expression in hosts
- Validation of LAMP assay