Experience in Portugal of securing authorisation to release *Trichilogaster acaciaelongifoliae*(against *Acacia longifolia*)

Elizabete Marchante¹, H. Freitas¹, J. Hoffmann³ & H. Marchante^{1,2}

¹Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal

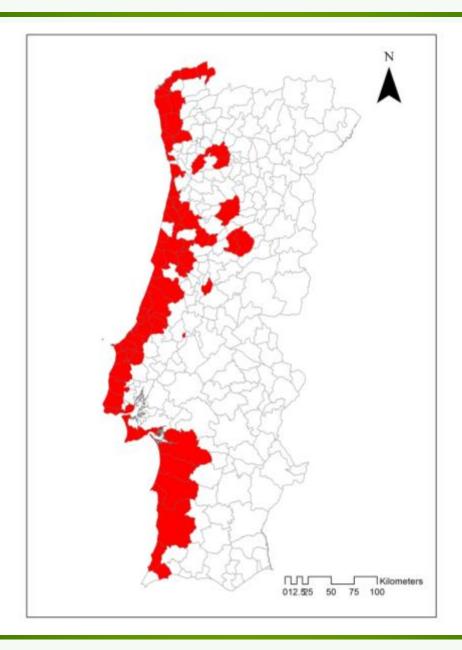
²Department of Environment, Agrarian School, Polytechnic Institute of Coimbra, Portugal

³University of Cape Town, South Africa

Funding: FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

The problem (1)

Invasion by Acacia longifolia in Portugal


- Exotic tree, from Australia

The problem (1)

Invasion by Acacia longifolia in Portugal

- Exotic tree, from Australia
- Introduced in the early 20th century for sand stabilization
- At present: invades extensive areas of coastal dunes and other habitats in Portugal (and Spain, France, Italy, South Africa...)
- Key point: massive seed production large long-lived seed bank
 → fast re-invasion potential

The problem (2)

Invasion by Acacia longifolia

- Major Impacts:
 - Decreases biodiversity; threatens protected species & habitats, e.g., Natura 2000 sites and Nature Reserves
 - Changes soil biology and biochemistry;
 - Decreases forest productivity
 - Increases fire hazard
 - **→** Economic impacts: >> 1M€ (last 10y)+ non-available data

The problem (2)

Invasion by Acacia longifolia

Major Impacts:

Invasion of the Portuguese dune ecosystems by the exotic species *Acacia longifolia* (Andrews) Willd.: effects at the community level.

Hélia Marchante¹*; Elizabete Marchante² and Helena Freitas²

Plant Invasions: Ecological Threats and Management Solutions, pp. 75-85 Edited by L.E.Child, J.H. Brock, G.Brundu, K. Prach, P.Pysek, P.M. Wade, M. Williamson © Backhuys Publishers, Leiden, The Netherlands

Soil Biology & Biochemistry 40 (2008) 2563-2568

diversity of sand dunes

Contents lists available at ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Invasive Acacia longifolia induce changes in the microbial catabolic

Elizabete Marchante a,b,*. Annelise Kiøller b. Sten Struwe b. Helena Freitas a

Biol Invasions DOI 10.1007/s10530-008-9280-8

ORIGINAL PAPER

Belowground mutualists and the invasive ability of *Acacia longifolia* in coastal dunes of Portugal

Susana Rodríguez-Echeverría · João A. Crisóstomo · Cristina Nabais · Helena Freitas

Plant Ecol DOI 10.1007/s11258-015-0530-4

Temporal changes in the impacts on plant communities of an invasive alien tree, Acacia longifolia

Hélia Marchante · Elizabete Marchante · Helena Freitas · John H. Hoffmann

Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem

Elizabete Marchante a,b,*, Annelise Kjøller b, Sten Struwe b, Helena Freitas a

The solution?

mechanical and chemical control available

- prohibitively expensive
- fails to succeed due to copious seed banks

Sustainable alternatives needed!

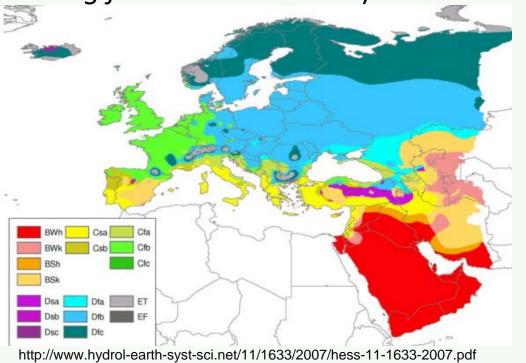
Biological control?

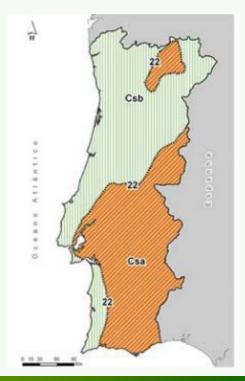
Australian bud-galling wasp (Hymenoptera: Pteromalidae), 3mm

- Australian bud-galling wasp (Hymenoptera: Pteromalidae), 3mm
- > 30 years in South Africa (after more than 40 non-target Acacia species tested most from SA, 12 from Australia)
- Mono-specific affects A. longifolia (sporadic, underdeveloped galls in A. melanoxylon and Paraserianthes lophantha)
- Annual life cycle:
 - 362 days inside galls;
 - Emergence of
 \(\begin{aligned} \\ \\ \exit{2} \end{aligned} \), search for flower (vegetative) buds;
 - oviposition and death after 2-3 days
 - galls develop instead of flowers NO SEEDS produced

Short term effects:

- Decline of seed production & dispersal;
- no addition to the seed bank


Long term effects:


- reduction of germination post-control, fire or other disturbances
- physiological stress plants die as cannot cope with heavy gall loads

- Potential distribution after release:
 - Preferred: Csb & Cfb climates (native range and South Africa)

Most probable distribution - Portugal and NW Spain (where

A. longifolia is also invasive)

Evaluation and regulation of biological control agents | 24 November | Budapest, HU

2003. Application for introduction into quarantine (ICN)

ICN – Portuguese national authorities for nature conservation – *A. longifolia* is mainly an environmental weed

Portuguese Law – Decree-Law no 565/99

MINISTÉRIO DO AMBIENTE

Decreto-Lei n.º 565/99

de 21 de Dezembro

A introdução de espécies não indígenas na Natureza pode originar situações de predação ou competição com espécies nativas, a transmissão de agentes patogénicos ou de parasitas e afectar seriamente a diversidade biológica, as actividades económicas ou a saúde pública, com prejuízos irreversíveis e de difícil contabilização. Acresce que, quando necessário, o controlo ou a erradicação de uma espécie introduzida, que se tornou invasora, são especialmente complexos e onerosos.

- Intentional introduction of alien species in the wild
- Some "economic" exceptions agriculture, horticulture, etc.

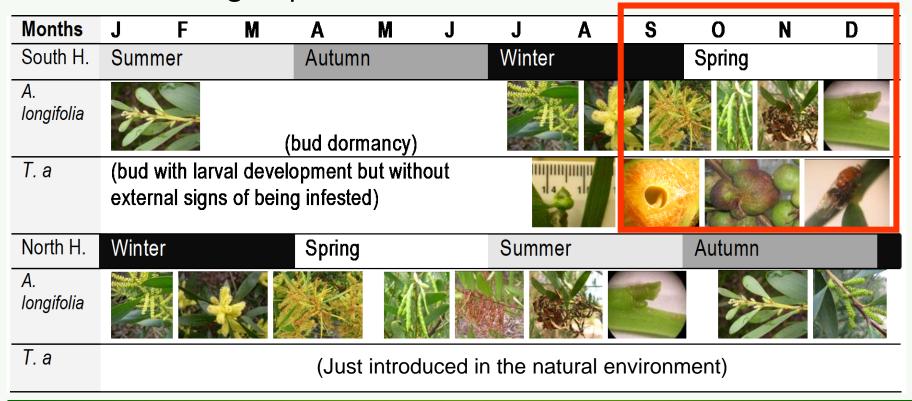
Not specific for biocontrol!

Dossier with BCA information (biology, host-specificity tests, etc)

Proposal of the list of species for the host-specificity testing - 40 species

Family			Non-target species	criteria
Anacardiaceae	1	n	Pistacia lentiscus L.	
Caprifoliaceae	2	n	Viburnum tinnus L.	
Cistaceae	3	n	Cistus psilosepalus Sweet	
Empetraceae	4	n	Corema album (L.) D.Don	
Ericaceae	5	n	Arbutus unedo L.	
	6	n	Erica scoparia L.	
Fabaceae	7	е	subfam. Caesalpinioideae - Ceratonia siliqua L.	
(=Leguminosae)	8	n	subfam. Faboideae - Cytisus striatus (Hill.) Rothm.	
	9	n	subfam. Faboideae - Genista falcata Brot.	
	10	n	subfam. Faboideae – Medicago marina L.	
	11	е	subfam. Faboideae - Phaseolus vulgaris L.	
	12	е	subfam. <i>Faboideae - Pisum sativum</i> L.	
	13	n	subfam. Faboideae - Stauracanthus genistoides (Brot.) Samp. subsp. genistoides	
	14	n	subfam. Faboideae - Ulex parviflorus L.	
	15	е	subfam. Faboideae - Vicia faba L.	
	16	е	subfam. <i>Mimosoideae - Acacia melanoxylon</i> R. Br.	
Fagaceae	17	n	Quercus faginea Lam.	
	18	n	Quercus lusitanica Lam.	
	19	n	Quercus pyrenaica Willd.	
	20	n	Quercus robur L.	
	21	n	Quercus rotundifolia Lam.	
	22	n	Quercus suber L.	
	23	n	Quercus x coutinhoi Samp.	
Lamiaceae	24	n	Lavandula luisieri (Rozeira) Rivas-Martinez	
Lauraceae	25	n	Laurus nobilis L.	
Myricaceae	26	n	Myrica faya Aiton	
Myrtaceae	27	е	Eucalyptus globulus Labill.	
Oleaceae	28	n	Phillyrea angustifolia L.	
Pinaceae	29	n	Pinus pinaster Aiton	
	30	е	Pseudotsuga menziesii (Mirbel) Franco	
Polygalaceae	31	n	Polygala vulgaris L.	
Rhamnaceae	32	n	Rhamnus alaternus L.	
Rosaceae	33	е	Pyrus communis L.	
	34	е	Prunus persica (L.) Batsch.	
	35	n	Prunus Iusitanica L.	
	36	е	Malus domestica Borkh.	
Rutaceae	37	е	Citrus sinensis (L) Osbeck	
Salicaceae	38	n	Salix atrocinerea Brot.	
Ulmaceae	39	n	Ulmus procera Salisb.	
Vitaceae	40	е	Vitis vinifera L.	

2003. Application for introduction into quarantine (ICN)


The species is not included in CITES

2004. Permit to host-specificity tests in quarantine

2005-2010. Hostspecificity testing in quarantine

Host-specificity tests

- Female wasps obtained from galls (South Africa)
- Specificity test
 - 40 non-target species tested

Host-specificity tests

- Female wasps obtained from galls (South Africa)
- Specificity test
 - 40 non-target species tested
 - Flower & vegetative buds dissected to detect eggs
 - 1 Non-choice test
 - 2 Paired-choice test
 - 3 Trials on potted plants
 - 4 Field surveys in South
 - Africa and Australia

Host-specificity tests

Biological Control

journal homepage: www.elsevier.com/locate/ybcon

Results:

Assessing the suitability and safety of a well-known bud-galling wasp, *Trichilogaster acaciaelongifoliae*, for biological control of *Acacia longifolia* in Portugal

H. Marchante a,*, H. Freitas b, J.H. Hoffmann c

- Oviposition in ONLY 3 non-target species in non-choice tests (Acacia melanoxylon, Vitis vinifera, Cytisus striatus)
- → BUT confinement in cages disrupts normal behavior (false positives)

Trials on potted plants:

- Galls **ONLY** developed on *A. longifolia* (able to complete the life cycle)
- Latter: A. retinodes (A. floribunda) & C. striatus NO Galls until now

Field surveys in South Africa and Australia:

- Galls ONLY detected on A. longifolia
- (*V. vinifera* is a major crop in South Africa, frequent next to invasive stands of galled *A. longifolia*)

November 2015 -... starting release ©

2003. Application for introduction into quarantine (ICN)

ICNF – national authorities for nature conservation and forests

DGAV – national authorities for plant health (agriculture and veterinary)

2015. SCPH - OK; DGAV/ICNF - OK - permit to release in the wild

> 2014-15. Risk Assessment by EFSA

Next talk

2011-12. Application for release in the wild: ICNF → DGAV

2004. Permit to host-specificity tests in quarantine

2005-2010. Hostspecificity testing in quarantine

2013. EC Standing Committee on Plant Health

Preliminary evaluation EPPO PM 6/2 (2)

November 2015 -... starting release ©

2003. Application for introduction into quarantine (ICN)

>12 years

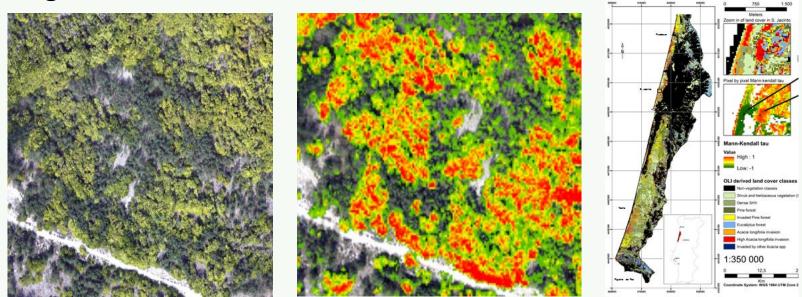
(BCA previously selected and tested)

2015. SCPH - OK; DGAV/ICNF - OK – permit to release in the wild

> 2014-15. Risk Assessment by EFSA

> > 2013. EC Standing Committee on Plant Health

2004. Permit to host-specificity tests in quarantine


2005-2010. Hostspecificity testing in quarantine

2011-12. Application for release in the wild: ICNF → DGAV

Future?

Following up

- Assess/ follow the distribution of A. longifolia and biocontrol agent (remote sensing);
- Monitoring plan in place to measure T. acaciaelongifoliae establishment and success; including direct and indirect nontarget effects

Future?

Ecological networks – plants-galling insects-parasitoids/inquilines

Future?

Ideal conditions to follow up (INVADER-B project - ongoing)

- Assess/ follow the distribution of A. longifolia and biocontrol agent (remote sensing);
- Monitoring plan in place to measure T. acaciaelongifoliae establishment and success; including direct and indirect nontarget effects

TO STRESS:

 Galls imported into quarantine facilities; only females that emerge will be released

Doing nothing is the biggest risk! More species lost, more money spent, more difficult the solution...

Acknowledgements

Research supported by FCT (Portuguese Foundation for Science and Technology) and POCTI/POCI/COMPETE/FEDER, through projects INVADER (POCTI/BSE/42335/2001), INVADER-II (POCi/AMB/61387/2004) and "INVADER-B - INVAsive plant species management in Portugal: from early DEtection to Remote sensing and Biocontrol of *Acacia longifolia*" (PTDC/AAG-REC/4607/2012).

Thank you! Obrigada ©

emarchante@uc.pt