IDENTITY

Name: Cherry leaf roll nepovirus

Taxonomic position: Viruses: Comoviridae: Nepovirus

Common names: CLRV (acronym)

No specific disease name is used for infections in Rubus

EPPO computer code: CRLRRX

EPPO A2 list: No. 148

EU Annex designation: II/A1

HOSTS

CLRV occurs commonly in woody species throughout Europe, Russia and North America (Jones, 1985), but not in Rubus in the EPPO region.

GEOGRAPHICAL DISTRIBUTION

Oceania: Found in Rubus only in R. idaeus in New Zealand (Jones & Wood, 1978). Although few comparative tests have been done, the raspberry isolate seems to differ in in vitro properties from others that have been described.

EU: Present.

BIOLOGY

Many strains in hosts other than Rubus are known (Jones, 1985); most of those from different natural host species are serologically distinguishable from each other (Jones & Murant, 1971; Jones, 1976). CLRV from R. procerus is serologically distinguishable from most other strains (Jones, 1976) but no tests have been made with an isolate from R. idaeus.

Unlike many nepoviruses, CLRV appears not to be transmitted by soil-inhabiting nematodes (Jones et al., 1981) despite earlier claims (Fritzsche & Kegler, 1964; Flegg, 1969), nor is it common in naturally infected herbaceous species. It is seed-borne in many natural and experimental hosts, often to a high frequency (Murant, 1983; Jones, 1985) but no tests have been made with Rubus. There is evidence that strains in walnut (Juglans regia) and birch (Betula) are pollen-transmitted to the plant pollinated (Mircetich et al., 1980; Cooper et al., 1984); no tests have been made to see if this mode of transmission occurs in Rubus. The virus is readily transmitted by mechanical inoculation of sap to a wide range of herbaceous species (Jones, 1985).
DETECTION AND IDENTIFICATION

Symptoms
Naturally infected *Rubus procerus* shows chlorotic mottling and line-pattern symptoms, stunting and plant death (Cropley & Tomlinson, 1971; Ormerod, 1972, 1975). In *R. idaeus*, plants are often stunted but only leaves of fruiting canes show any obvious symptoms; many of these leaves are small and distorted, and a few show line-pattern symptoms, severe chlorotic mottling or ringspots (Jones & Wood, 1978).

Morphology
The isometric particles of several CLRV strains have been well studied and their properties shown to be those of nepoviruses (Jones, 1985).

Detection and inspection methods
The symptoms induced by CLRV in *Rubus* and in many herbaceous test plants resemble those induced by several nematode-borne viruses, so that CLVR can only be identified unequivocally by serological tests. As CLVR has a wide range of serological variants, antisera to several virus strains should be used. Inspection and test methods are also presented in OEPP/EPPO (1991).

MEANS OF MOVEMENT AND DISPERSAL
Lacking a natural vector, CLRV is in practice dispersed by human movement of infected seeds or plants, or by pollen. Transmission by pollen from imported *Rubus* to local plants, or propagation of imported *Rubus*, would be the practical means of establishment of CLRV in this crop in the EPPO region.

PEST SIGNIFICANCE

Economic impact
CLRV is widespread in raspberry in New Zealand, where it is associated with severe disease in some areas (Jones & Wood, 1978). If the raspberry isolate is pollen-borne to mature plants, as appears to be the case with some other CLRV strains, it has the potential to spread rapidly.

Control
The pollen-borne mode of transmission of CLRV makes its spread in crops difficult to control except by growing plants immune or resistant to infection. Healthy planting material should be used, based for example on the virus-free certification scheme for *Rubus* developed by OEPP/EPPO (1994).

Phytosanitary risk
The EPPO A2 quarantine list includes three pollen-borne viruses of *Rubus* (OEPP/EPPO, 1986). Of these, CLRV, like apple mosaic ilarvirus (EPPO/CABI, 1996a) is widespread in Europe but hardly found in *Rubus* there. So European *Rubus* can probably only become infected by CLRV by pollen transmission from infected *Rubus* from non-EPPO regions. Black raspberry latent ilarvirus, the third virus concerned, does not occur in the EPPO region at all (EPPO/CABI, 1996b).

CLRV, unlike the other two viruses, causes significant damage to *Rubus*. However, the decision to consider it as a quarantine pest was mainly based on the wish of certain EPPO countries to produce and maintain virus-free *Rubus*. This could probably be achieved as successfully by using normal certification, following for example an adaptation of the scheme proposed by OEPP/EPPO (1994). The fact that CLRV is occasionally found in
Rubus in Europe tends to diminish the justification for treating it as an A2 quarantine pest. It may also be noted that the pollen transmissibility of CLRV in *Rubus* is conjectural, based on the analogy with other strains of the virus (see Biology).

PHYTOSANITARY MEASURES

Plants of *Rubus* from countries where CLRV occurs in *Rubus* should come from a reliable certification scheme, in which particular attention has been paid to preventing pollen-transmitted reinfection. Standard methods for eliminating viruses can be used for CLRV in nuclear stock of *Rubus*.

BIBLIOGRAPHY

